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CHAPTER 1: Introduction

1.1 What is an embedded system? Why is it so hard to define?

An embedded system is nearly any computing system other than a desktop computer.
Embedded systems are hard to define because they cover such a board range of
electronic devices.

1.2 List and define the three main characteristics of embedded systems that distinguish such
systems from other computing systems.

1. single functioned : executes a specific program repeatedly
2. tightly constrained : the specified cost, performance, and power must be met
3. reactive and real-time: system must quickly and constantly react to outside stimuli

1.3 What is a design metric?

A design metric is a measure of an implementation’s features such as cost, size,
performance, and power.

1.4 List a pair of design metrics that may compete with one another, providing an intuitive
explanation of the reason behind the competition.

(Note: answers will vary)
Size and performance compete with one another. Reducing the size of an
implementation may cause performance to suffer and vice versa.

1.5 What is a “market window” and why is it so important for products to reach the market
early in this window?
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A market window is the time period in which a given product is in demand,
specifically the time in which this product would yield the highest sales. Missing the
window could mean significant loss in sales.

1.6 Using the revenue model of Figure 1.4(b), derive the percentage revenue loss equation
for any rise angle, rather than just for 45 degrees (Hint: you should get the same
equation).

tan A = opposite / adjacent
opposite = tan A * adjacent

Revenue loss = ( (on time - delayed) / on time ) * 100%

Area of on time = 1/2 * base * height
= 1/2 * 2W * tan A * W
= tan A * W2

Area of delay = 1/2 * base * height
= 1/2 * ( W-D+W ) * ( tan A * ( W-D ) )
= 1/2 * ( 2W-D ) * ( tan A * ( W-D ) )

Revenue Loss = [ ( (tan A * W2) - (1/2 * (2W-D) * tan A * (W-D)) ) /
(tan A * W2)] * 100%

= [ ( W2 - (1/2 * (2W-D) * (W-D)) ) / W2 ] * 100%
= [ ( W2 - 1/2*(2W2 - 2WD - WD - D2) ) / W2 ] * 100%
= [ (W2 - 1/2*(2W2 - 3WD - D2) ) / W2 ] * 100%
= [ (2W2 - 2W2 + 3WD + D2) / 2W2 ] * 100%
= [ (3WD + D2) / 2W2 ] * 100%

1.7 Using the revenue model of Figure 1.4(b), compute the percentage revenue loss if D = 5
and W = 10. If the company whose product entered the market on time earned a total
revenue of $25 million, how much revenue did the company that entered the market 5
months late lose?

percentage revenue loss = ( D * ( 3W - D ) / 2W2 ) * 100%
= ( 5 * ( 3 * 10 - 5 ) / 2 * 102 ) * 100%
= ( 5 * 25 / 200 ) * 100%
= 62.5%

revenue loss = $25,000,000 * 0.625
= $15,625,000

A A
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W-D
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1.8 What is NRE cost?

NRE cost is the nonrecurring engineering cost. It is the one time monetary cost of
designing the system.

1.9 The design of a particular disk drive has an NRE cost of $100,000 and a unit cost of
$20. How much will we have to add to the cost of each product to cover our NRE cost,
assuming we sell: (a) 100 units, and (b) 10,000 units?

(a) added cost = NRE / # units produced
= $100,000 / 100
= $1,000

(b) added cost = NRE / # units produced
= $100,000 / 10,000
= $10

1.10 Create a graph with the x-axis the number of units and the y-axis the product cost. Plot
the per-product cost function for an NRE of $50,000 and a unit cost of $5.

Number of Units Per-product Cost Number of Units Per-product Cost
1 50005 5000 15

50 1005 10000 10
100 505 50000 6
200 255 100000 5.5
300 171.6666667 500000 5.1
400 130 1000000 5.05
500 105 5000000 5.01
1000 55
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1.11 For a particular product, you determine the NRE cost and unit cost to be the following
for the three listed IC technologies: FPGA: ($10,000, $50); ASIC: ($50,000, $10);
VLSI: ($200,000, $5). Determine precise volumes for which each technology yields the
lowest total cost.

Total cost = NRE cost + (unit cost * # units produced)

FPGA = 10,000 + 50x
ASIC = 50,000 + 10x
VLSI = 200,000 + 5x

10,000 + 50x = 50,000 + 10x
40x = 40,000

x = 1,000

50,000 + 10x = 200,000 + 5x
5x = 150,000

x = 30,000

technology amount
FPGA < 1,000 units
ASIC 1,000 - 30,000 units
VLSI > 30,000 units

1.12 Give an example of a recent consumer product whose prime market window was only
about one year.

Note: Answers will vary.

1.13 Create an equation for total profit that combines time-to-market and NRE/unit cost
considerations. Use the revenue model of Figure 1.4(b). Assume a 100-month product
lifetime, with peak revenue of $100,000 month. Compare use of a general-purpose
processor having an NRE cost of $5,000, a unit cost of $30, and a time-to-market of 12
months (so only 88 months of the product’s lifetime remain), with use of a single-
purpose processor having an NRE cost of $20,000, a unit cost of $10, and a time-to-
market of 24 months. Assume the amount added to each unit for profit is $5.

( )[ ]
5*

5costunit

NRElossrevenuefraction1*revenue
profittotal 





+
−−=
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Product A: General Purpose Processor
NRE = $5,000
unit cost = $30
time to market = 12 months (88 months of market window remaining)

Revenue = 1/2 base * heigth
= 1/2 * 100 months * $100,000 per month
= $5,000,000

Fraction Revenue Loss = (D * (3W-D)) / 2W2

= ( 12*(3*50-12) ) / (2*502)
= 0.3312

Total Profit = [ ((5,000,000 * (1-0.3312)) - 5,000) / (30 + 5) ] * 5
= [ (3,344,000 - 5,000) / 35 ] * 5
= 95400 * 5
= $477,000

Product B: Single Purpose Processor
NRE = $20,000
unit cost = $10
time to market = 24 months (76 months of market window remaining)

Revenue = $5,000,000

Fraction Revenue Loss = (D * (3W-D)) / 2W2

= ( 24*(3*50-24) ) / (2*502)
= 0.6048

Total Profit = [ ((5,000,000 * (1-0.6048) - 20,000) / (10 + 5) ] * 5
= 130,400 * 5
= $652,000

1.14 Using a spreadsheet, develop a tool that allows us to plug in any numbers for problem
1.13 and generates a revenue comparison of the two technologies.

Note: This answer is currently unavailable as it requires the use of a spreadsheet
program.

1.15 List and define the three main processor technologies. What are the benefits of using
each of the three different processor technologies?
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1. General Purpose Processor
A general-purpose processor consists of a controller, general datapath, and a program
memory. Designers can load a variety of programs into memory. Since a
general--purpose processor is flexible a large number of these devices can be sold for a
variety of applications. Using a general-purpose processor, the time to market and NRE
cost is low.

2. Single Purpose Processor
A digital circuit designed to execute exactly one program. Since a single purpose
processor is designed for only one task it will have high performance, small size, and
low power consumption.

3. Application Specific Instruction Set Processor (ASIP)
This is a compromise between a general purpose processor and a single purpose
processor. It is a programmable processor optimized for a particular class of
applications. An ASIP allows flexibility while still achieving good performance, size,
and power consumption.

1.16 List and define the three main IC technologies. What are the benefits of using each of
the three different IC technologies?

1. Full-Custom / VLSI
All layers of this IC is optimized and will therefore yield excellent performance, small
size, and low power consumption.

2. Semi-custom ASIC (Gate Array and Standard Cell)
The lower layers are fully or partially built, leaving the upper layers to be finished by
the designer. This yields good performance, size, and a lower NRE cost than that of a
full-custom IC.

3. Programmable Logic Device (PLD)
All layers already exist so the designer can purchase an IC. PLDs offer low NRE costs
and almost instant IC availability. PLDs are well suited for rapid prototyping.

1.17 List and define the three main design technologies. How are each of the three different
design technologies helpful to designers?

1. Compilation/Synthesis
This design technology allows a designer to define functionality in an abstract manner
and the technology will automatically generate the lower-level implementation details.
Designers benefit because they do not have to be aware of the lower-level
implementation details, which will increase their productivity.
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2. Libraries/IP
Libraries and IP are essentially catalog of pre-existing implementations. This benefits
the designers because they don't have to "re-invent the wheel".

3. Test/Verification
This design technology ensures that the functionality of a system is correct. This saves
the designer time by preventing debugging at a low level.

1.18 Create a 3*3 grid with the three processor technologies along the x-axis, and the three
IC technologies along the y-axis. For each axis, put the most programmable form
closest to the origin, and the most customized form at the end of the axis. Explain
features and possible occasions for using each of the combinations of the two
technologies.

1. GPP + PLD
The device is flexible since it can run a variety of applications. Since the designers are
using a PLD they can easily change the features of the GPP. This situation may occur
in the development and testing of a GPP.

2. AISP + PLD
This device will run a class of applications. Since the designers are using a PLD they
can easily change the features of the ASIP. This situation may be used when
developing and testing an ASIP.

3. SPP + PLD
This device will run a single program. However, since the designers are using a PLD
they can easily modify the program or make corrections. This situation may occur
when developing and testing an SPP.

4. GPP + Semi-Custom

PLD

Semi-custom
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SP
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Full-custom
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This device will execute a variety of applications. Since we are using semi-custom
technology, once programming/connection are done the designers cannot change them.
A situation where this may occur is when the GPO is already developed and tested and
a designers desire an IC but not the cost and time of making a full-custom IC.

5. ASIP + Semi-Custom
This device will execute a class of applications well since it was optimized with those
applications in mind. Once the programming/connections are done, changes cannot be
made. This situation arises after an ASIP is fully developed and tested and an IC is
desired but the time and cost of full-custom IC is not.

6. SPP + Semi-Custom
This device will execute a single program. Once programming/connections are done
the program will not change. This situation may occur once the final development and
testing is done and an IC is desired but the time and cost of full-custom IC is not.

7. GPP + Full-Custom
This device will execute a variety of programs. Each layer has been optimized so that
the device will yield excellent performance and power consumption. This option is one
of the most expensive and is desired when the performance, size, and power trade offs
are of greater concern then cost and time. This situation may arise after final
development and testing. Moreover, a large quantity of ICs will be produced thereby
reducing the NRE per unit.

8. ASIP + Full-Custom
This device will execute a domain specific application well. Each layer has been
optimized so the device will yield excellent performance and power consumption. This
option is one of the most expensive and is desired when the performance, size, and
power trade offs are of greater concern then cost and time. This situation may occur
after final development and testing. Moreover, a large quantity of ICs will be produced
thereby reducing the NRE per unit.

9. SPP + Full-Custom
This device will execute a single program. Each layer has been optimized such that the
device will yield excellent performance and power consumption. This option is one of
the most expensive and is desired when the performance, size, and power trade offs are
of greater concern then cost and time. This situation may occur after final development
and testing. Moreover, a large quantity of ICs will be produced thereby reducing the
NRE per unit.
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1.19 Redraw Figure 1.9 to show the transistors per IC from 1990 to 2000 on a linear, not
logarithmic, scale. Draw a square representing a 1990 IC and another representing a
2000 IC, with correct relative proportions.
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1.20 Provide a definition of Moore’s law.

IC transistor capacity doubles every 18 months.

1.21 Compute the annual growth rate of (a) IC capacity, and (b) designer productivity.

(a) Annual growth rate of IC capacity

X = IC capacity of current year
Y = IC capacity of current year + 3 years
r = growth rate

every 18 months chip capacity doubles therefore in 3 years chips size is 4x as large

Y = X * r * r * r = 4X
X * r3 = 4X
r = 3√ 4
r = 1.587

(b) Annual growth rate of designer productivity

1981 productivity = 100 transistors / designer month
2002 productivity = 5,000 transistors / designer month
X = productivity in 1981
2002 - 1981 = 21 years

X * r21 = (5,000/100) X
r21 = 50
r = 21√ 50
r = 1.205

1.22 If Moore’s law continues to hold, predict the approximate number of transistors per
leading edge IC in (a) 2030, (b) 2050.

# transistors in year B = # transistors in year A * annual growth rate(year B - year A)

(a) # transistors in 2030 = # transistors in 2002 * annual growth rate(2030-2002)

= 150,000,000 * 1.58728

= 61,900,000,000,000

(b) # transistors in 2050 = # transistors in 2002 * annual growth rate(2050-2002)
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= 150,000,000 * 1.58748

= 6,360,000,000,000,000
1.23 Explain why single-purpose processors (hardware) and general-purpose processors are

essentially the same, and then describe how they differ in terms of design metrics.

Single purpose processor and general-purpose processors are essentially the same in
terms of a designer's job. With the maturation of design tools, both designers start with
writing sequential programs. Depending on whether the designer's goal is a single
purpose processor or a general-purpose processor, the synthesis tool would then
produce gates or machine instructions. Hardware excels in performance, size and
power consumption. Software enables flexibility, low NRE cost, and rapid product
development.

1.24 What is a “renaissance engineer,” and why is it so important in the current market?

It is a designer who is comfortable and familiar with various technologies. Specifically,
it is a designer who knows both the software and hardware design aspects involved in
product development. For the best optimization of systems a designer must be able to
move functionality between hardware and software at any stage in development.

1.25 What is the design gap?

The design gap is the inability for designer productivity to keep pace with chip
capacity growth.

1.26 Compute the rate at which the design productivity gap is growing per year. What is the
implication of this growing gap?

Based on question 1.21 we have determined that the annual IC growth rate is 1.587 and
the annual designer productivity growth rate is 1.205.

yo = start year
y = end year

design gap(y) = 1.587(y-yo) - 1.205(y-yo)

The design gap is not a simple linear function. The gap increases as each year goes by.
This means that each year the designers are able to use a smaller and smaller
percentage of transistors available.

1.27 Define what is meant by the “mythical man-month.”
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The "mythical man-month" refers to the decrease in productivity as designers are added
to a project. This is due to the fact that as team sizes increase the amount of time
needed for organization and communication start to exceed the time a designer is able
to get actual work accomplished.

1.28 Assume a designer’s productivity when working alone on a project is 5,000 transistors
per month. Assume that each additional designer reduces productivity by 5%. (And
keep in mind this is an extremely simplified model of designer productivity!) (a) Plot
team monthly productivity versus team size for team sizes ranging from 1 to 40
designers. (b) Plot on the same graph the project completion time versus team size for
projects of sizes 100,000 and 1,000,000 transistors. (c) Provide the “optimal” number of
designers for each of the two projects, indicating the number of months required in each
case.

team size
transistors per

designer per month
team monthly
productivity

completion of
100,000

completion of
1,000,000

1 5000 5000 20 200
2 4750 9500 10.52631579 105.2631579
3 4512.5 13537.5 7.386888273 73.86888273
4 4286.875 17147.5 5.8317539 58.317539
5 4072.53125 20362.65625 4.910950653 49.10950653
6 3868.904688 23213.42813 4.30785145 43.0785145
7 3675.459453 25728.21617 3.886783263 38.86783263
8 3491.68648 27933.49184 3.579931953 35.79931953
9 3317.102156 29853.91941 3.349643932 33.49643932

10 3151.247049 31512.47049 3.173346883 31.73346883
11 2993.684696 32930.53166 3.036695582 30.36695582
12 2844.000461 34128.00554 2.93014486 29.3014486
13 2701.800438 35123.4057 2.847104317 28.47104317
14 2566.710416 35933.94583 2.782883919 27.82883919
15 2438.374896 36575.62343 2.734061394 27.34061394
16 2316.456151 37063.29841 2.698086902 26.98086902
17 2200.633343 37410.76684 2.673027272 26.73027272
18 2090.601676 37630.83017 2.657395533 26.57395533
19 1986.071592 37735.36025 2.650034327 26.50034327
20 1886.768013 37735.36025 2.650034327 26.50034327
21 1792.429612 37641.02185 2.656676017 26.56676017
22 1702.808131 37461.77889 2.669387385 26.69387385
23 1617.667725 37206.35767 2.687712699 26.87712699
24 1536.784339 36882.82413 2.711289126 27.11289126
25 1459.945122 36498.62804 2.739829012 27.39829012
26 1386.947866 36060.64451 2.773106287 27.73106287
27 1317.600472 35575.21275 2.810945944 28.10945944
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28 1251.720449 35048.17256 2.853215808 28.53215808
29 1189.134426 34484.89836 2.899820059 28.99820059
30 1129.677705 33890.33115 2.950694095 29.50694095
31 1073.19382 33269.00841 3.005800436 30.05800436
32 1019.534129 32625.09212 3.065125445 30.65125445
33 968.5574223 31962.39494 3.12867669 31.2867669
34 920.1295512 31284.40474 3.196480829 31.96480829
35 874.1230736 30594.30758 3.2685819 32.685819
36 830.4169199 29895.00912 3.345039957 33.45039957
37 788.8960739 29189.15474 3.42592997 34.2592997
38 749.4512702 28479.14827 3.511340966 35.11340966
39 711.9787067 27767.16956 3.60137535 36.0137535
40 676.3797714 27055.19086 3.696148385 36.96148385

(a), (b)
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(c)

100,000 transistors = 19 or 20 members = 2.65 months

However, 19 is the correct answer because you will be paying one less designer for
the same productivity and product completion time.

1,000,000 transistors = 19 or 20 members = 26.5 months

Again, for the same reason as above, 19 is the correct answer.
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CHAPTER 2: Custom Single-Purpose
Processors: Hardware

2.1 What is a single-purpose processor? What are the benefits of choosing a single-purpose
processor over a general-purpose processor?

A single-purpose processor is designed specifically to carry out a particular
computational task. The benefits of using a single-purpose processor is that the
performance will be faster, the size may be smaller, and the power consumption may
be less.

2.2 How do nMOS and pMOS transistors differ?

A nMOS transitor conducts if the gate is high (i.e. 1). A pMOS transistor conducts if
the gate is low (i.e. 0).

2.3 Build a 3-input NAND gate using a minimum number of CMOS transistors.

1

0

yx

x

y

z

z

F = (xyz)'
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2.4 Build a 3-input NOR gate using a minimum number of CMOS transistors.

2.5 Build a 2-input AND gate using a minimum number of CMOS transistors.

2.6 Build a 2-input OR gate using a minimum number of CMOS transistors.

1

0

y

x

x y z

z

F = (x+y+z)'

1

0

yx

x

y

F = xy

1

0

y

x

x y

F = xy



Chapter 2: Custom Single-Purpose Processors: Hardware

Embedded System Design 17

2.7 Explain why NAND and NOR gates are more common than AND and OR gates.

Because pMOS transistors don't conduct zeros very well and nMOS transistors don't
conduct ones very well, AND and OR gates are designed by using NAND and NOR
gates, respectively, along with an invertor. Thus, NAND and NOR gates are more
common due to their reduced size.

2.8 Distinguish between a combinational circuit and a sequential circuit.

A combinational circuit is a digital circuit whose output is purely a function of its
present inputs. A sequential circuit is a digital circuit whose outputs are a function of
the present as well as the previous input values.

2.9 Design a 2-bit comparator (compares two 2-bit words) with a single output “less-than,”
using the combinational design technique described in the chapter. Start from a truth
table, use K-maps to minimize logic, and draw the final circuit.

a1 a0 b1 b0 lt ( a < b)
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

00 01 11 10

00

01

11

10

b1b0

a1a0

lt = b1a1' + b0a1'a0' + b1b0a0'

a0

b1

b0

a1

lt
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2.10 Design a 3×8 decoder. Start from a truth table, use K-maps to minimize logic and draw
the final circuit.

a2 a1 a0 d7 d6 d5 d4 d3 d2 d1 d0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

K-maps are not essential for determining the log for each output since only a single one
appears in each table

d7 = a2a1a0
d6 = a2a1a0'
d5 = a2a1'a0
d4 = a2a1'a0'
d3 = a2'a1a0
d2 = a2'a1a0'
d1 = a2'a1'a0
d0 = a2'a1'a0'

2.11 Describe what is meant by edge-triggered and explain why it is used.

Edge-triggered describes logic that examines their non-clock triggered input when the
clock signal rises from zero to one, or alternatively when the clock signal falls from
one to zero. This is used because it prevents unexpected behavior from signal glitches.

a2 a1 a0

d7

d6

d5

d4

d3

d2

d1

d0
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2.12 Design a 3-bit counter that counts the following sequence: 1, 2, 4, 5, 7, 1, 2, etc. This
counter has an output “odd” whose value is 1 when the current count value is odd. Use
the sequential design technique of the chapter. Start from a state diagram, draw the state
table, minimize the logic, and draw the final circuit.

Inputs Outputs
Q2 Q1 Q0 I2 I1 I0 count2 count1 count0 add
0 0 0 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1 0 0
0 1 0 0 1 1 1 0 0 0
0 1 1 1 0 0 1 0 1 1
1 0 0 0 0 0 1 1 1 1
1 0 1 x x x x x x x
1 1 0 x x x x x x x
1 1 1 x x x x x x x

Combinational
Logic

State Register

count1
count0
odd

I2
I1
I0

Q2 Q1 Q0

count2

clk

0 0 1 0
0 X X X

0
1

Q1Q0
Q2

I2

00 01 11 10

I2 = Q1Q0

0 1 0 1
0 X X X

0
1

Q1Q0
Q2

I1

00 01 11 10

I1 = Q1'Q0 + Q1Q0'

0

4

3

2

1

count = 010
odd = 0

count = 100
odd = 0

count = 101
odd = 1

count = 001
odd = 1

count = 111
odd = 1
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1 0 0 1
0 X X X
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Q1Q0
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I0

00 01 11 10

I0 = Q2'Q0'

0 0 1 1
1 X X X

0
1

Q1Q0
Q2

count2

00 01 11 10

count2 = Q2 + Q1

0 1 0 0
1 X X X
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Q1Q0
Q2

count1
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count1 = Q2 + Q1'Q0
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2.13 Four lights are connected to a decoder. Build a circuit that will blink the lights in the
following order: 0, 2, 1, 3, 0, 2, .... Start from a state diagram, draw the state table,
minimize the logic, and draw the final circuit.

2.14 Design a soda machine controller, given that a soda costs 75 cents and your machine
accepts quarters only. Draw a black-box view, come up with a state diagram and state
table, minimize the logic, and then draw the final circuit.

Q1 Q0 I1 I0 S11 S01
0 0 1 0 0 0
0 1 1 1 0 1
1 0 0 1 1 1
1 1 0 0 1 1

1 0
1 0

0
1

Q1
Q0

I1

0 1

I1 = Q1'

0 1
1 0

0
1

Q1
Q0

I0

0 1

I0 = Q1Q0' + Q1'Q0

0 1
0 1

0
1

Q1
Q0

S11

0 1

S11 = Q1

0 0
1 1

0
1

Q1
Q0

S01

0 1

S01 = Q0

Q1 Q0

I1

I0

S01

S02

0

32

1
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S11 = 0

S01 = 0
S11 = 0
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2
sout = 0

1
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3
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cin =1

cin =1

cin =1

cin =1

cin = 0

cin = 0 cin = 0

cin = 0
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2.15 What is the difference between a synchronous and an asynchronous circuit?

A synchronous circuit's input value only has an effect during a clock cycle edge. An
asynchronous circuit's input value affect the circuit independent of the clock.

2.16 Determine whether the following are synchronous or asynchronous: (a) multiplexor, (b)
register, (c) decoder.

(a) asynchronous
(b) synchronous
(c) asynchronous

2.17 What is the purpose of the datapath? of the controller?

The datapath stores and manipulates a systm's data. The controller sets the datapath
control inputs and monitors external control inputs as well as datapath control outputs.

2.18 Compare the GCD custom-processor implementation to a software implementation (a)
Compare the performance. Assume a 100-ns clock for the microcontroller, and a 20-ns
clock for the custom processor. Assume the microcontroller uses two operand

0 0 0 1
0 1 0 1

0
1

Q1Q0
cin

I1

00 01 11 10

I1 = Q1Q0' + Q1'Q0Cin

0 0 1 0
0 0 1 0

0
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Q1 Q0 cin
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instructions, and each instruction requires four clock cycles. Estimates for the
microcontroller are fine. (b) Estimate the number of gates for the custom design, and
compare this to 10,000 gates for a simple 8-bit microcontroller. (c) Compare the custom
GCD with the GCD running on a 300-MHz processor with 2-operand instructions and
one clock cycle per instruction (advanced processors use parallelism to meet or exceed
one cycle per instruction). (d) Compare the estimated gates with 200,000 gates, a
typical number of gates for a modern 32-bit processor.

(a) possible GCD implementation on a microprocessor:

mainloop: ld go, go_i
bz go, mainloop
ld x, z_i
ld y, y_i

gcdloop: be x, y, done
blt x, y, if
sub x, x, y
jmp endif

if: sub y, y, x
endif: jmp gcdloop
done: st d_o, x

jmp mainloop

microcontroller: 32 instructions = 32 * 4 cycles/instr * 100 ns = 12,800 ns
custom GCD: 38 instrucions = 38 * 20 ns = 760 ns

(b) Assume 4-bit words

2 * 4-bit 2x1 mux = 2 * 16 gates = 32 gates
3 * 4-bit register = 3 * 24 gates = 72 gates
2 * 4-bit subtractor = 2 * 29 gates = 58 gates
< comparator = 15 gates
!= comparator = 24 gates
1 4-bit state register = 24 gates
FSM combinational logic = est 45 gates

Total = 252 gates

(c) GCD on 300-MHZ processor

38 instruction => 38 * 1 cycle/second * 3.33 ns/cycle = 126.54 ns

(d) compare estimated gates with 200,000

Example execution when x=39 and y=27

clock cycle x y
0 39 27
1 12 27
2 12 15
3 12 3
4 9 3
5 6 3
6 3 3
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Estimated gates are 252 which is quite a bit smaller than the 200,000 gate
processor.

2.19 Design a single-purpose processor that outputs Fibonacci numbers up to n places. Start
with a function computing the desired result, translate it into a state diagram, and sketch
a probable datapath.

int x1, x2, temp, count, n;
while(1){

while(!go_i);
x1 = 1;
x2 = 1;
n = n_i;
count = 0;
while(count < n){

if(count != 0 && count !=1){
temp = x1;
x1 = x2;
x2 = x1 + temp;

}
fib_o = x2;
count ++;

}
}

n_ld

count

n

inc

NEQ NEQ C

2 to 1 2 to 1

X1 X2

temp

+

fib

2 to 1

c_ld x2_selx1_ld x2_ldc_sel

n_i

0

count_lt_n

1

1 1

x1_selfib_ld

cout_ne_o1 fib_o

x1 =1

x2 =1

n = n_i;

count = 0;

temp = x1

x1 =x2

x2 = x1 + temp

fib_o = x2

count++;

!1

1

!go_i

!(!go_i)

count < n

!(count < n)

int x1, x2,...

!(count != 0 &&
count != 1) (count != 0 &&

count != 1)
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2.20 Design a circuit that does the matrix multiplication of matrices A and B. Matrix A is
3×2 and matrix B is 2×3. The multiplication works as follows:

2.21 An algorithm for matrix multiplication, assuming that we have one adder and one
multiplier, follows. (a) Convert the matrix multiplication algorithm into a state diagram
using the template provided in Fig1.10. (b) Rewrite the matrix multiplication algorithm
given the assumption that we have three adders and six multipliers. (c) If each
multiplication takes two cycles to compute and each addition takes one cycle compute,
how many cycles does it take to complete the matrix multiplication given one adder and
one multiplier? Three adders and six multipliers? Nine adders and 18 multipliers? (d) If
each an adder requires 10 transistors to implement and each multiplier requires 100
transistors to implement, what is the total number of transistor needed to implement the
matrix multiplication circuit using one adder and one multiplier? Three adders and six
multipliers? Nine adders and 18 multipliers? (e) Plot your results from parts (c) and (d)
into a graph with latency along the x-axis and size along the y-axis.

a b
c d
e f

g h i
j k l

a*g + b*j a*h + b*k a*i + b*l
c*g + d*j c*h + d*k c*i + d*l
e*g + f*j e*h + f*k e*i + f*l

=

A B C

**

+

C[0][0]

**

+

C[0][1]

**

+

C[0][2]

**

+

C[1][0]

**

+

C[1][1]

**

+

C[1][2]

**

+

C[2][0]

**

+

C[2][1]

**

+

C[2][2]

a
b
c
d
e
f
g
h
i
j
k
l
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(a) state diagram for matrix multiply (b) rewrite using 3 adders and 6 multipliers

(c) cycles to complete matrix multiply

(d) number of transistors

i = 0

j = 0

C[i][j] = 0

k = 0

C[i][j]+=A[i][j]*B[k][j]

k++

j++

i++

!(k < 2)

!(i < 3)

!(j<3)

i < 3

k < 2

j < 3

main( ) {
int A[3][2] = { {1, 2}, {3,4}, {5,6} };
int B[2][3] = { {7, 8, 9}, {10, 11, 12} };
int C[3][3];
int i, j, k;

for (i=0; i < 3; i++){
for ( j=0; j < 3; j++){

C[i][j]=0;
for (k=0; k < 2; k++){

C[i][j] += A[i][k] * B[k][j];
}

}
}

main( ) {
int A[3][2] = { {1, 2}, {3,4}, {5,6} };
int B[2][3] = { {7, 8, 9}, {10, 11, 12} };
int C[3][3];
int i, k;

for (i=0; i < 3; i++){
C[i][0]= A[i][0]*B[0][0]+A[i][1]*B[1][0];
C[i][1]= A[i][0]*B[0][1]+A[i][1]*B[1][1];
C[i][2]= A[i][0]*B[0][2]+A[i][1]*B[1][2];

}

1 adder + 1 multiplier = 54 cycles
3 adders + 6 multipliers = 9 cycles
9 adders + 18 multipliers = 3 cycles

1 adder + 1 multiplier = 110 transistors
3 adders + 6 multipliers = 630 transistors
9 adders + 18 multipliers = 1890 transistors
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(e) plot cycles verses number of transistors

2.22 A subway has an embedded system controlling the turnstile, which releases when two
tokens are deposited. (a) Draw the FSMD state diagram for this system. (b) Separate the
FSMD into an FSM+D. (c) Derive the FSM logic using truth tables and K-maps to
minimize logic. (d) Draw your FSM and datapath connections.

(a) FSMD state diagram

(b) FSM+D
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(c) FSM logic using truth tables and K-maps to minimize logic

Q0 Q1 token tokens_eq_2 I1 I0 tokens_sel tokens_ld release
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 1 0
0 0 1 1 0 1 0 1 0
0 1 0 0 1 0 1 1 0
0 1 0 1 1 0 1 1 0
0 1 1 0 1 0 1 1 0
0 1 1 1 1 0 1 1 0
1 0 0 0 1 0 X 0 0
1 0 0 1 1 1 X 0 0
1 0 1 0 0 1 X 0 0
1 0 1 1 1 1 X 0 0
1 1 0 0 0 0 X 0 1
1 1 0 1 0 0 X 0 1
1 1 1 0 0 0 X 0 1
1 1 1 1 0 0 X 0 1

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 0

00 01 11 10

00
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10
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(d) FSM and datapath connections

tokens
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2to1
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2

release_o

tokens_eq_2
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tokens_sel
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State Register
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CHAPTER 3: General-Purpose
Processors: Software

3.1 Describe why a general-purpose processor could cost less than a single-purpose
processor you design yourself.

Processor manufactures can spread NRE cost for the processor's design over the large
number of units sold, often in the millions or billions.

3.2 Detail the stages of executing the MOV instructions of Figure 3.7, assuming an 8-bit
processor and a 16-bit IR and program memory following the model of Figure 3.1. For
example, the stages for the ADD instruction are (1) fetch M[PC] into IR, (2) read Rn
and Rm from register file through ALU configured for ADD, storing results back in Rn.

MOV Rn, direct
1. fetch M[PC] into IR
2. move contents of register Rn into M[direct]

MOV direct, Rn
1. fetch M[PC] into IR
2. move contents of register Rn into M[direct]

MOV @Rn, Rm
1. fetch M[PC] into IR
2. move contents of register Rn into M[Rm]

MOV Rn, #imm
1. fetch M[PC] into IR
2. move immediate value into register Rn

3.3 Add one instruction to the instruction set of Figure 3.7 that would reduce the size of our
summing assembly program by 1 instruction. Hint: add a new branch instruction. Show
the reduced program.
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// add instruction JNZ Rn, relative
0: MOV R0, #0
1: MOV R1, #10
2: MOV R2, #1
Loop: ADD R0, R1
4: SUB R1, R2
5: JNZ R1, Loop

Note: Answers may vary.

3.4 Create a table listing the address spaces for the following address sizes: (a) 8-bit, (b)
16-bit, (c) 24-bit, (d) 32-bit, (e) 64-bit.

Address Size (bits) Address Space
8 28-1 = 255

16 216-1 = 65,535
24 224-1 = 16,777,215
32 232-1 = 4,294,967,295
64 264-1 ≈ 1.84 x 1019

3.5 Illustrate how program and data memory fetches can be overlapped in a Harvard
architecture.

Suppose we have the following 2 instructions in a pipelined machine:
MOV R1, #10
ADD R3, R4

Cycle 1: Fetch PM[PC] into IR where PC=0

Cycle 2: Fetch DM[10] and store in R1
Fetch PM[PC] into IR where PC=1

In cycle 2, we are simultaneously fetching from program and data memory.

Note: Answers will vary.

3.6 Read the entire problem before beginning. (a) Write a C program that clears an array
“short int M[256].” In other words, the program sets every location to 0. Hint: your
program should only be a couple lines long. (b) Assuming M starts at location 256 (and
thus ends at location 511), write the same program in assembly language using the
earlier instruction set. (c) Measure the time it takes you to perform parts a and b, and
report those times.



Chapter 3: General-Purpose Processors: Software

Embedded System Design 33

(a) C program

for ( i=0; i<256; i++){
M[i] = 0;

}

(b) Assembly program, assume M begins at location 256

MOV R1, #256 // i = 256 start location of M
MOV R2, #1 // R2 = constant value of 1
MOV R3, #256 // R3 = constant value of 256
MOV R4, #0 // R4 = constant value of 0

Loop: MOV @R1, R4 // M[R1]=0
ADD R1, R2 // R1 ++
SUB R3, R2 // R3 --
JNZ R3, Loop // if counter at zero, all locations initialized

(c) time to perform part(a) and part(b)

Note: Answers will vary.

3.7 Acquire a databook for a microcontroller. List the features of the basic version of that
microcontroller, including key characteristics of the instruction set (number of
instructions of each type, length per instruction, etc.), memory architecture and
available memory, general-purpose registers, special-function registers, I/O facilities,
interrupt facilities, and other salient features.

Note: Answers will vary.

3.8 For the microcontroller in the previous exercise, create a table listing five existing
variations of that microcontroller, stressing the features that differ from the basic
version.

Note: Answers will vary.
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CHAPTER 4: Standard Single-Purpose
Processors: Peripherals

4.1 Given a timer structured as in Figure 4.1 (c) and a clock frequency of 10 MHz: (a)
Determine its range and resolution. (b) Calculate the terminal count value needed to
measure 3 ms intervals. (c) If a prescaler is added, what is the minimum division
needed to measure an interval of 100 ms? (Divisions should be in powers of 2.)
Determine this design’s range and resolution. (d) If instead of a prescaler a second 16-
bit up-counter is cascaded as in Figure 4.1 (d), what is the range and resolution of this
design?

(a) resolution = period = 1 / frequency = 1 / (10 MHz) = 1e-7 s
range = 2^16 * resolution = 65536 * 1e-7s = .0065536 s

= 0 to 6.5536 ms

(b) terminal count value = desired time interval / clock period
3e-3 s / 1e-7 s = 30,000

(c) The prescaler should be set to output a frequency 1/(2^4) or 1/16 the original
frequency of 10 MHz.

resolution = 16 * original resolution = 16 * 1e-7 s = 1.6e-6 s
range = 16 * original range = 16 * 6.5536 ms

= 0 to 104.8576 ms

(d) resolution = 1e-7 s (does not change)
range = 2^32 * resolution = 0 to 429.4967296 s

4.2 A watchdog timer that uses two cascaded 16-bit up-counters as in Figure 4.1 (d) is
connected to an 11.981 MHz oscillator. A timeout should occur if the function
watchdog_reset is not called within 5 minutes. What value should be loaded into the
up-counter pair when the function is called?
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period = 1 / (11.981 MHz) = 8.346548702e-8 s
range = period * 2^32 = 8.346548702e-8 s * 2^32 = 358.4815371 s
"time-out" = 5 min. * (60 s / 1 min.) = 300 s
X = range – "time-out" = 358.4815371 s - 300 s = 58.4815371 s
value loaded = X / period = 58.4815371 s / 8.346548702e-8 s = 700667296

4.3 Given a controller with two built-in timers designed as in Figure 4.1 (b), write C code
for a function “double RPM” that returns the revolutions per minute of some device or
–1 if a timer overflows. Assume all inputs to the timers have been initialized and the
timers have been started before entering RPM. Timer1's cnt_in is connected to the
device and is pulsed once for each revolution. Timer2's clk input is connected to a 10
MHz oscillator. The timers have the outputs cnt1, cnt2, top1, and top2, which were
initialized to 0 when their respective timer began. What is the minimum (other than 0)
and maximum revolutions per minute that can be measured if top is not used?

double RPM(){
int rev, ticks = 0;
double time = 0;
rev = cnt1;
ticks = cnt2;

// when top1 or top2 are 1 than a timer has overflowed
if( top1 == 0 && top2 == 0){

// ticks of clock * period gives seconds
time = ticks * (1/10000000);

// convert seconds to minutes
time = time * (1/60);
return (rev/time);

}
return( -1 );

}

resolution = period = 1 / frequency = 1 / (10 MHz) = 1e-7 s * (1 min. / 60 s)
= 1.6667e-7 min.

max range = 2^16 * resolution = 65536 * 1e-7s
= .0065536 s * (1 min. / 60 s)
= 1.092267e-4 min.

min rpm = 1 rev / max range = 1 / 1.092267e-4 min. = 9155.273437
max rpm = max revs / (1 resolution) = 2^16 revs / 1.6667e-7 min.

= 3.932081358e11
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4.4 Given a 100 MHz crystal-controlled oscillator and a 32-bit and any number of 16-bit
terminal-count timers, design a real-time clock that outputs the date and time down to
milliseconds. You can ignore leap years. Draw a diagram and indicate terminal-count
values for all timers.

4.5 Determine the values for smod and TH1 to generate a baud rate of 9,600 for the 8051
baud rate equation in the chapter, assuming an 11.981 MHz oscillator. Remember that
smod is 2 bits and TH1 is 8 bits. There is more than one correct answer.

Baudrate = (2^smod / 32) * oscfreq / (12 * (256 – TH1))

9600 = (2^3 / 32) * 11,981,000 / (12 * (256 – TH1))
9600 = 2995250 / (3072 – 12 * TH1)
29491200 – 115200 * TH1 = 2995250
26495950 = 115200 * TH1
TH1 = 230 = 11100110
smod = 3 = 11

cnt
top

32

cnt
top

16

cnt
top

16

cnt
top

16

(100000000 / 1000)

millisecond

second
999

cnt
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16
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59
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16

cnt
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16
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364
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-or-

9600 = (2^2 / 32) * 11,981,000 / (12 * (256 – TH1))
9600 = 1497625 / (3072 – 12 * TH1)
29491200 – 115200 * TH1 = 1497625
27993575 = 115200 * TH1
TH1 = 243 = 11110011
smod = 2 = 10

4.6 A particular motor operates at 10 revolutions per second when its controlling input
voltage is 3.7 V. Assume that you are using a microcontroller with a PWM whose
output port can be set high (5 V) or low (0 V). (a) Compute the duty cycle necessary to
obtain 10 revolutions per second. (b) Provide values for a pulse width and period that
achieve this duty cycle. You do not need to consider whether the frequency is too high
or too low although the values should be reasonable. There is no one correct answer.

(a) 3.7V / 5V = .74 = 74% duty cycle

(b) There are infinitely many answers.

Example:
period = 100 ns (pick any reasonable value)
pulse width = .74 * period = .74 * 100 ns = 74 ns

4.7 Using the PWM described in Figure 4.6 compute the value assigned to PWM1 to
achieve an RPM of 8,050 assuming the input voltage needed is 4.375 V.

4.375 / 5 = .875 = 87.5 % duty cycle
.875 * 254 (counter reset value) = 222
PWM1 = 222 = CDh

4.8 Write a function in pseudocode that initializes the LCD described in Figure 4.7. After
initialization, the display should be clear with a blinking cursor. The initialization
should set the following data to shift to the left, have a data length of 8-bits and a font
of 5 ×10 dots, and be displayed on one line.

LCDinit(){
RS = 0; // indicate control words
CONTROL_WORD = 0x01; // clear display, return cursor home
EnableLCD(45); // toggle enable and delay
CONTROL_WORD = 0x07; // shift left (I/D=1, S=1) (00000111)
EnableLCD(45); // toggle enable and delay
CONTROL_WORD = 0x0F; // display on, cursor on and blinking

// (00001111)
EnableLCD(45); // toggle enable and delay
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CONTROL_WORK = 0x1B; // 8-bit, one line, and 5x10 font
// (00011011)

EnableLCD(45); // toggle enable and delay
}

4.9 Given a 120-step stepper motor with its own controller, write a C function Rotate (int
degrees), which, given the desired rotation amount in degrees (between 0 and 360),
pulses a microcontroller’s output port the correct number of times to achieve the
desired rotation.

The motor takes 120 steps to rotate 360 degrees so the degrees per step = 360/120 = 3.

Rotate( int degrees ){
const int DPS = 3 // degrees per step
int i
for( i = 0; i < (degrees/DPS); i++){

outport = 0
delay()
outport = 1

}
}

4.10 Modify only the main function in Figure 4.12 to cause a 240-step stepper motor to
rotate forward 60 degrees followed by a backward rotation of 33 degrees. This stepper
motor uses the same input sequence as the example for each step. In other words, do not
change the lookup table.

// 360 / 240 = 1.5 degrees per step
while(1){

// 60 degrees / 1.5 degrees per step = 40 steps
move(1,40); // 1 = forward
// 33 / 1.5 = 22 steps
move(0,22); // 0 = backward

}

4.11 Extend the ratio and resolution equations of analog-to-digital conversion to any voltage
range between Vmin to Vmax rather than 0 to Vmax.

ratio: (e – Vmin) / (Vmax – Vmin) = d / (2^n – 1)
resolution: (Vmax – Vmin) / (2^n – 1)

4.12 Given an analog output signal whose voltage should range from 0 to 10 V, and an 8-bit
digital encoding, provide the encodings for the following desired voltages: (a) 0 V, (b)
1 V, (c) 5.33 V, (d) 10 V, (e) What is the resolution of our conversion?

n = 8, 2n – 1 = 255
Vmin = 0, Vmax = 10
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(a) 0V

0 / 10 = d / 255
d = 0
00000000

(b) 1V
1 / 10 = d / 255
d = 25.5 ≅ 25
00011001

(c) 5.33V

5.33 / 10 = d / 255
d = 135.9 ≅ 136
10001000

(d) 10V

10 / 10 = d / 255
d = 255
11111111

(e) What is the resolution of our conversion?

10 – 0 / 255 = 0.039V

4.13 Given an analog input signal whose voltage ranges from 0 to 5 V, and an 8-bit digital
encoding, calculate the correct encoding for 3.5 V, and then trace the
successive-approximation approach (i.e., list all the guessed encodings in the correct
order) to find the correct encoding.

3.5 / 5 = d / 255
d = 178.5 ≅ 179
10110011

3.5 > ½(5 + 0) 10000000
3.5 < ½(5 + 2.5) 10000000
3.5 > ½(3.75 + 2.5) 10100000
3.5 > ½(3.75 + 3.125) 10110000
3.5 < ½(3.75 + 3.437) 10110000
3.5 < ½(3.594 + 3.437) 10110000
3.5 > ½(3.515 + 3.437) 10110010
3.5 > ½(3.515 + 3.476) 10110011
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4.14 Given an analog input signal whose voltage ranges from –5 to 5 V, and a 8-bit digital
encoding, calculate the correct encoding 1.2 V, and then trace the successive-
approximation approach to find the correct encoding.

(1.2 – (-5)) / (5 – (-5)) = d / 255
.62 = d / 255
d = 158.1 ≅ 158
10011110

1.2 > ½(5 + -5) 10000000
1.2 < ½(5 + 0) 10000000
1.2 < ½(2.5 + 0) 10000000
1.2 > ½(1.25 + 0) 10010000
1.2 > ½(1.25 + 0.625) 10011000
1.2 > ½(1.25 + 0.9375) 10011100
1.2 > ½(1.25 + 1.09375) 10011110
1.2 < ½(1.25 + 1.171875) 10011110

4.15 Compute the memory needed in bytes to store a 4-bit digital encoding of a 3-second
analog audio signal sampled every 10 milliseconds.

3 s * (1000 ms / 1s) = 3000 ms
3000ms / (10 ms / sample) = 300 samples
300 samples * 4 bits = 1200 bits * (1 byte / 8 bits) = 150 bytes
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CHAPTER 5: Memory

5.1 Briefly define each of the following: mask-programmed ROM, PROM, EPROM,
EEPROM, flash EEPROM, RAM, SRAM, DRAM, PSRAM, and NVRAM.

1. Mask-programmed ROM:
Mask-programmed ROM is the read only memory where the “programming” of its
memory is done at fabrication time with masks. It has the lowest write ability and the
highest storage permanence of the different types of memory.

2. PROM:
User programmable ROM is memory that can be written after fabrication but before
normal operation. PROM’s can be one-time-programmable, typically by blowing fuses,
or erasable-programmable. In either case, the programming is accomplished with a
device, not software.

3. EPROM:
Erasable PROM can be programmed by injecting electrons into “floating gates”. They
can be erased using ultra-violet light and then reprogrammed. EPROM’s have higher
write ability than mask-programmed ROM, but they have lower storage permanence.

4. EEPROM:
Electrically-erasable programmable ROM’s are programmed and erased electronically,
thus speeding up the process compared to the EPROM. Also, the EEPROM erases
single words rather than the whole memory. Because of these features, EEPROM’s can
be written to by the embedded system during its operation, although at a much slower
rate than a typical memory read. However, the written data would be kept even after the
power is turned off. EEPROM’s have better write ablility than the EPROM and their
storage permanence is similar.

5. Flash EEPROM:
Flash EEPROM’s are EEPROM’s that are able to erase large blocks of memory rather
than just a word at a time although they can be slower at writing single words.

6. RAM:



Chapter 5: Memory

44 Embedded System Design

Random Access Memory is the traditional read-write memory. Reads and writes take
approximately the same amount of time. RAM’s do not have any data programmed into
them before operation. All reads and writes are done during execution time.

7. SRAM:
Static RAM holds data for as long as there is power supplied to it. It is typically
implemented on the IC using flip-flops to store bits.

8. DRAM:
Dynamic RAM is smaller than SRAM because it uses only a MOS transistor and a
capacitor to store a bit. Because it uses a capacitor, though, it loses its charge
eventually. Thus, DRAM must be “refreshed” periodically. DRAM’s are typically
implemented off the IC and are slower to access than SRAM’s.

9. PSRAM:
Pseudo-static RAM is a DRAM that refreshes itself, thus simulating an SRAM while
retaining the DRAM’s compactness.

10. NVRAM:
Non-volatile RAM works much like ROM’s in that its data is kept after the power is
off. One type of NVRAM uses an internal battery while another actually stores its data
on an EEPROM or flash memory before the power is turned off and then reloads it after
the power is turned back on.

5.2 Define the two main characteristics of memories as discussed in this chapter. From the
types of memory mentioned in Exercise 5.1, list the worst choice for each
characteristic. Explain.

1. Write ability:
Write ability refers to the manner and speed that the memory can be written. Memories
can be written by a processor, a “programmer”, or only at fabrication time. Memories
written by a processor vary in the speed to which they are written.

2. Storage performance:
Storage permanence refers to the ability to store the bits once they are written to the
memory. The permanence ranges from near zero to essentially infinite.

Worst Choices:
The worst choice in terms of write ability is the mask-programmed ROM. This memory
is written at fabrication time and can never be written again.
The worst choice in terms of storage permanence is the basic DRAM. This memory has
to be “refreshed” often and loses all data when power is turned off.
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5.3 Sketch the internal design of a 4 × 3 ROM.

5.4 Sketch the internal design of a 4 × 3 RAM.

5.5 Compose 1K x 8 ROMs into a 1K × 32 ROM (Note: 1K actually means 1,024 words).

5.6 Compose 1K x 8 ROMs into an 8K × 8 ROM.

4x3 ROM

2x4
decoder

enable

A0
A1

Q3 Q2 Q1 Q0

word 0

word 1

word 2

programmable
connection

4x3 RAM

2x4
decoder

Q3 Q2 Q1
Q0

I3 I2 I1
I0

enable

A0
A1

rd/wr

memory
cell

To every cell

1kx8 ROM1kx8 ROM 1kx8 ROM 1kx8 ROMenable

10

8 8 8 8

A(9 – 0)

Q(31-24) Q(23 - 16) Q(15-8) Q(7 - 0)
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1kx8 ROM

1kx8 ROM

1kx8 ROM

1kx8 ROM

1kx8 ROM

1kx8 ROM

1kx8 ROM

1kx8 ROM

3x8 decoder

Q(7 – 0)

8

8

8

8

8

8

8

8

8

3

enable

A(9 – 0)

10

A(12 - 10)
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5.7 Compose 1K x 8 ROMs into a 2K × 16 ROM.

5.8 Show how to use a 1K × 8 ROM to implement a 512 × 6 ROM.

1kx8 ROM 1kx8 ROM

enable

10

8 8

A(9 – 0)

Q(15-8) Q(7 - 0)

1kx8 ROM1kx8 ROM

8 8

1x2
decoder

1kx8 ROM

enable

A9

Q7 Q6 Q5 Q4 Q3

A8

A7

A6

A5

A4

A3

A2

A1
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5.9 Given the following three cache designs, find the one with the best performance by
calculating the average cost of access. Show all calculations. (a) 4 Kbyte, 8-way set-
associative cache with a 6% miss rate; cache hit costs one cycle, cache miss costs 12
cycles. (b) 8 Kbyte, 4-way set-associative cache with a 4% miss rate; cache hit costs
two cycles, cache miss costs 12 cycles. (c) 16 Kbyte, 2-way set-associative cache with a
2% miss rate; cache hit costs three cycles, cache miss costs 12 cycles.

a.) 4 Kb, 8-way set-associative cache with a 6% miss rate; cache hit costs 1 cycle,
cache miss costs 12 cycles.

miss rate = .06
hit rate = 1- miss rate = .94
.94 * 1cycle (hit) + .06 * 12 cycles (miss) = .94 + .72 = 1.66 cycles avg.

b.) 8 Kb, 4-way set-associative cache with a 4% miss rate; cache hit costs 2 cycles,
cache miss costs 12 cycles.

miss rate = .04
hit rate = 1 – miss rate = .96
.96 * 2 cycles (hit) + .04 * 12 cycles (miss) = 1.92 + .48 = 2.4 cycles avg.

c.) 16 Kb, 2-way set-associative cache with a 2% miss rate; cache hit costs 3 cycles,
cache miss costs 12 cycles.

miss rate = .02
hit rate = 1 – miss rate = .98
.98 * 3 cycles (hit) + .02 * 12 cycles (miss) = 2.94 + .24 = 3.18 cycles avg.

BEST PERFORMANCE: a) 1.66 cycles avg.

5.10 Given a 2-level cache design where the hit rates are 88% for the smaller cache and 97%
for the larger cache, the access costs for a miss are 12 cycles and 20 cycles,
respectively, and the access cost for a hit is one cycle, calculate the average cost of
access.

hit rate = .88
L1 miss/L2 hit rate = .12 * .97
L1miss/L2 miss rate = .12 * .03

Avg. cost = (.88 * 1) + (.12 * .97 * 12) + (.12 * .03 * 20)
= .88 + 1.3968 + .072
= 2.3488 cycles
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5.11 A given design with cache implemented has a main memory access cost of 20 cycles on
a miss and two cycles on a hit. The same design without the cache has a main memory
access cost of 16 cycles. Calculate the minimum hit rate of the cache to make the cache
implementation worthwhile.

H = hit rate
miss rate = 1-hit rate = 1-H

avg. memory access cost (cache) < memory access cost (no cache)
2 cycles * H + 20 cycles * (1-H) < 16 cycles
2H + 20 – 20H < 16
– 18H < – 4
H > (4/18) = .22 = 22% hit rate minimum

5.12 Design your own 8K × 32 PSRAM using an 8K × 32 DRAM, by designing a refresh
controller. The refresh controller should guarantee refresh of each word every 15.625
microseconds. Because the PSRAM may be busy refreshing itself when a read or write
access request occurs (i.e., the enable input is set), it should have an output signal ack
indicating that an access request has been completed. Make use of a timer. Design the
system down to complete structure. Indicate at what frequency your clock must operate.

Assumptions:
- 512 rows of 16 words each
- Refreshes one row at a time (strobe ras with incremented address)
- clk must be 32.768 MHz (period = 15.625x10-6/512)
- en is AND’ed with ras’, so that it selects requested address only if ras is not

selected (no refreshing going on). It also sets ack to high

DRAM
(8k x 32)

acken

01

clkras
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CHAPTER 6: Interfacing

6.1 Draw the timing diagram for a bus protocol that is handshaked, nonaddressed, and
transfers 8 bits of data over a 4-bit data bus.

6.2 Explain the difference between port-based I/O and bus-based I/O.

With port-based I/O, the processor can read from or write to a port directly just as it
would a register. Sometimes the processor can even access just one bit of the port. So, a
peripheral can be accessed in the same way a register is accessed. Bus-based I/O,
however, must use a bus protocol implemented in hardware to access any peripherals.
The bus protocol writes to control, address, and data lines to communicate with the
peripherals.

6.3 Show how to extend the number of ports on a 4-port 8051 to 8 by using extended
parallel I/O. (a) Using block diagrams for the 8051 and the extended parallel I/O
device, draw and label all interconnections and I/O ports. Clearly indicate the names
and widths of all connections. (b) Give C code for a function that could be used to write
to the extended ports.

(a) Using block diagrams for the 8051 and the extended parallel I/O device, draw and
label all interconnections and I/O ports. Clearly indicate the names and widths of all
connections

3 : 07 : 4

req

ack

data

from master

from servant

Servant puts data on the bus then asserts ack.
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(b) Give C code for a function that could be used to write to the extended ports.

Ext_Port( unsigned char data, int EP, int rd_wr ) {
unsigned char mask;
P3 = data;
if( rd_wr == 0 ) // sets enable to 1 and rd/wr to 0 or 1

mask = 0x80; // write (sets P2^6 = 0)
else

mask = 0xC0; // read (sets P2^6 = 1)

switch( EP ) { // sets coreect Ext_Port to be enabled

case 0:
P2 = mask | 0x01;
break;

case 1:
P2 = mask | 0x02;
break;

case 2:
P2 = mask | 0x04;
break;

case 3:
P2 = mask | 0x08;
break;

case 4:
P2 = mask | 0x10;
break;

case 5:
P2 = mask | 0x20;
break;

case 6:
P2 = mask | 0x40;
break;

default:
// disable if incorrect EP given

8051

0 1 2 3 4 5

8

8

8

6

P0

P1

P2

P3 (5:0)(6)(7)

data enable rd/wr addr

EP2 EP3 EP4 EP5 EP6 EP7

8 8 8 8 8 8
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P2 = mask & 0x00;
break;

}
}

6.4 Discuss the advantages and disadvantages of using memory-mapped I/O versus
standard I/O.

Memory-mapped I/O has the advantage of not needing special assembly instructions to
access the peripherals. Any memory access instruction would also work with
peripherals. The disadvantage to this method is that the peripheral addresses would
decrease the number of memory addresses available with a particular address bus size,
thus limiting the memory to a smaller size.

The standard I/O has a separate pin indicating an access to either memory or a
peripheral. Therefore, the entire range of a particular address bus size can be used to
access the memory. Another advantage to using standard I/O is that the decoding logic
in a peripheral can be reduced since the bits needed to address only the peripheral will
be much less.

6.5 Explain the benefits that an interrupt address table has over fixed and vectored interrupt
methods.

A benefit that the interrupt address table has over the fixed interrupt method is that an
ISR location can be changed without having to change anything in the peripheral. Only
the table will need to be updated. A benefit over the vectored interrupt method is that
the table is much smaller than memory. The peripheral need only send over the entry
number in the table, which will be much smaller than the address of the ISR. This is
especially beneficial with a narrow data bus.

6.6 Draw a block diagram of a processor, memory, and peripheral connected with a system
bus, in which the peripheral gets serviced using vectored interrupt. Assume servicing
moves data from the peripheral to the memory. Show all relevant control and data lines
of the bus, and label component inputs/outputs clearly. Use symbolic values for
addresses. Provide a timing diagram illustrating what happens over the system bus
during the interrupt.



Chapter 6: Interfacing

54 Embedded System Design

6.7 Draw a block diagram of a processor, memory, peripheral, and DMA controller
connected with a system bus, in which the peripheral transfers 100 bytes of data to the
memory using DMA. Show all relevant control and data lines of the bus, and label
component inputs/outputs clearly. Draw a timing diagram showing what happens
during the transfer; skip the 2nd through 99th bytes.

MDATA
µP

memory

ISRLOC

PDATA

peripheral

rd/wr
addr
data

IntReq
IntAck

system bus

ISRLoc data data

PDATA MDAT
A

IntReq

IntAck

data

addr

rd/wr

µP

PDATA

PDATA

peripheral

PDATA

MDATA

rd/wr
addr

AckDAck

DReq

data

Req

100
0

99

MDATA

memory
MDATA0

99

DMA
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6.8 Repeat problem 6.7 for a daisy-chain configuration.

Error: Problem 6.7 is not the correct problem. There is no need for a daisy-chain
configuration in Problem 6.7.

6.9 Design a parallel I/O peripheral for the ISA bus. Provide: (a) a state-machine
description and (b) a structural description.

(a) state machine description

PDATA MDATAPDATAMDAT
Abyte 0 byte 1 byte 1byte 0

Req

DAck
addr

data

rd/wr

Ack

DReq

/IOR = 0BUSY = 0
/IOW = 1

/IOR = 0

BUSY = 0

BUSY = 0

/IOR = 1
/IOW = 1

CHRDY = 0

BUSY = 1

BUSY = 1

CHRDY = 0/IOR = 0
BUSY = 1

CHRDY = 1
DATA =

PORT(ADDR)

BUSY = 0

BUSY = 1

/IOW = 0

/IOR = 1

CHRDY = 1
PORT(ADDR) =

DATA
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(b) structural description

6.10 Design an extended parallel I/O peripheral. Provide: (a) a state-machine description and
(b) a structural description.

(a) state-machine description

(b) structural description

ADDR
(on ISA bus)

/IOW (on ISA bus)

CHRDY (on ISA bus)

/IOR (on ISA bus)

DATA

I/O PORTS

encoder

controller

ISA
bus enable

bi-directional tri-state buffers

RST P2
=EP(P1[2:7])

EP(P1) = P2

P1^0 = 1
(read)

P1^1 = 1

P1^0 = 0
(write)

P1^1 = 1

P1^0 = 0
P1^1 = 1

P1^0 = 1
P1^1 = 1

P1^1 = 0

P1^1 = 0

P2(data)

I/O PORTS

encoder

bi-directional tri-state buffers
P1



Chapter 6: Interfacing

Embedded System Design 57

6.11 List the three main transmission mediums described in the chapter. Give two common
applications for each.

Parallel communication involves the simultaneous transfer of data words between two
devices. It is usually only used between devices on the same IC or circuit board.
Common parallel protocol applications are the PCI bus and the ARM bus.

Serial communication uses a single wire capable of sending only one bit of data at a
time. I2C actually has two wires with one wire used for control purposes. Another
common serial protocol is the Universal Serial Bus, or USB.

Wireless communication typically uses infrared or radio frequencies to transfer data
between two devices without a physical connection. A protocol that uses infrared is the
IrDA protocol. Bluetooth is a new protocol based on radio frequencies.

6.12 Assume an 8051 is used as a master device on an I2C bus with pin P1.0 corresponding
to I2C_Data and pin P1.1 corresponding to I2C_Clock. Write a set of C routines that
encapsulate the details of the I2C protocol. Specifically, write the routines called
StartI2C/StopI2C, that send the appropriate start/stop signal to slave devices. Likewise,
write the routines ReadByte and WriteByte, each taking a device Id as input and
performing the appropriate I/O actions.

I2C_start{
P1.1 = 1; // SCL held high
P1.0 = 1; // high to low on SDA
delay();
P1.0 = 0;

}

I2C_stop{
P1.1 = 1; // SCL held high
P1.0 = 0; // low to high on SDA
delay();
P1.0 = 1;

}

WriteByte(byte deviceID){
I2C_start(); // start transfer

for( int i = 7; i < 0; i-- ){ // send device ID
P1.1 = 0; // hold SCL low for each bit
P1.0 = DeviceID^i;
delay();
P1.1 = 1;

}

P1.1 = 0; // hold SCL low
P1.0 = 0; // write signal
delay();
P1.1 = 1;
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P1.1 = 0; // get ACK from device
delay();
if( P1.0 == 1 ){ // did not get ack

return(0); // exit with error
}

for( int i = 7; i < 0; i-- ){ // send data byte

P1.1 = 0; // hold SCL low for each bit
P1.0 = DATA^i;
Delay();
P1.1 = 1;

}

P1.1 = 0; // get ACK from device
delay();
if( P1.0 == 1 ){ // did not get ack

return(0); // exit with error
}
I2C_stop(); // stop transfer

}

ReadByte(byte deviceID){
I2C_start(); // start transfer
for( int i = 7; i < 0; i-- ){ // send device ID

P1.1 = 0; // hold SCL low for each bit
P1.0 = DeviceID^i;
delay();
P1.1 = 1;

}
P1.1 = 0; // hold SCL low
P1.0 = 1; // read signal
delay();
P1.1 = 1;

P1.1 = 0; // get ACK from device
delay();
if( P1.0 == 1 ){ // did not get ack

return(0); // exit with error
}

for( int i = 7; i < 0; i-- ){ // receive data byte

P1.1 = 0; // hold SCL low for each bit
DATA^i = P1.0;
Delay();
P1.1 = 1;

}

P1.1 = 0; // get ACK from device
delay();
if( P1.0 == 1 ){ // did not get ack

return(0); // exit with error
}
I2C_stop(); // stop transfer

}
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6.13 Select one of the following serial bus protocols, then perform an Internet search for
information on transfer rate, addressing, error correction (if applicable), and
plug-and-play capability (if applicable). Then give timing diagrams for a typical
transfer of data (e.g., a write operation). The protocols are USB, I2O, Fibre Channel,
SMBus, IrDA, or any other serial bus in use by the industry and not described in this
book.

NOTE: Answers will vary.

6.14 Select one of the following parallel bus protocols, then, perform an Internet search for
information on transfer rate, addressing , DMA and interrupt control (if applicable), and
plug-and-play capability (if applicable). Then give timing diagrams for a typical
transfer of data (e.g., a write operation). The protocols are STD 32, VME, SCSI,
ATAPI, Micro Channel, or any other parallel bus in use by the industry and not
described in this book.

NOTE: Answers will vary.
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CHAPTER 7: Digital Camera Example

7.1 Using any programming language of choice, (a) implement the FDCT and IDCT
equations presented in section 7.2 using double precision and floating-point arithmetic.
(b) Use the block of 8 × 8 pixel given in Figure 1.2 (b) as input to your FDCT and
obtain the encoded block. (c) Use the output of part (b) as input to your IDCT to obtain
the original block. (e) Compute the percent error between your decoder’s output and the
original block.

a.) The C code for the FDCT and IDCT follows:

double C_d(int h)
{
if (h == 0)
return M_SQRT1_2;

else
return 1.0;

}

float C_f(int h)
{
if (h == 0)
return (float)(M_SQRT1_2);

else
return 1.0;

}

double FDCT_d(double pixels[8][8], int u, int v)
{
double value = 0.25*C_d(u)*C_d(v);
double totalSum = 0;
for(int i =0; i<8; ++i)
{
for(int j = 0; j<8; ++j)
{
totalSum += pixels[i][j] * cos(M_PI*(2*i+1)*u/16) *

cos(M_PI*(2*j+1)*v/16);
}

}
return value*totalSum;

}
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double IDCT_d(double values[8][8], int x, int y)
{
double totalSum = 0;
for (int u = 0; u < 8; ++u)
{
for (int v = 0; v < 8; ++v)
{
totalSum += C_d(u) * C_d(v) * values[u][v] *

cos((double)M_PI*(2.0*(double)x+1.0)*(double)u/16.0) *
cos((double)M_PI*(2.0*(double)y+1.0)*(double)v/16.0);

}
}
return totalSum * 0.25;

}

float FDCT_f(float pixels[8][8], int u, int v)
{
float value = 0.25*C_f(u)*C_f(v);
float totalSum = 0;
for(int i =0; i<8; ++i)
{
for(int j = 0; j<8; ++j)
{
totalSum += pixels[i][j] *

((float)(cos(M_PI*(2*i+1)*u/16))) *
((float)(cos(M_PI*(2*j+1)*v/16)));

}
}
return value*totalSum;

}

float IDCT_f(float values[8][8], int x, int y)
{
float totalSum = 0;
for (int u = 0; u < 8; ++u)
{
for (int v = 0; v < 8; ++v)
{
totalSum += C_f(u) * C_f(v) * values[u][v] *

((float)(cos(M_PI*(2*x+1)*u/16))) *
((float)(cos(M_PI*(2*y+1)*v/16)));

}
}
return totalSum * (float)(0.25);

}
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(b) The encoded block from the C code is:

(c) The IDCT C code from above will result in the following block:

(e) The percent error between the decoder’s output and the original block was 2.15 x
10-13 %.

7.2 Assuming 8 bits per each pixel value, calculate the length, in bits, of the block given in
Figure 1.3 (b).

512 bits

7.3 Using the Huffman codes given in Figure 1.5, encode the block given in Figure 1.3 (b).
(a) What is the length, in bits? (b) How much compression did we achieve be using
Huffman encoding? Use the results of the last question to calculate this.

The encoded block is:

111111011010110001010011100100110
0111010001111011111000100101000
11100010001101010100111010110
100101111110110011011110110010

1150 39 –43 –10 26 –83 11 41

–81 –3 115 –73 –6 –2 22 –5

14 –11 1 –42 26 –3 17 –38

2 –61 –13 –12 36 –23 –18 5

44 13 37 –4 10 –21 7 –8

36 –11 –9 –4 20 –28 –21 14

–19 –7 21 –6 3 3 12 –21

–5 –13 –11 –17 –4 –1 7 –4

123 157 142 127 131 102 99 235

134 135 157 112 109 106 108 136

135 144 159 108 112 118 109 126

176 183 161 111 186 130 132 133

137 149 154 126 185 146 131 132

121 130 127 146 205 150 130 126

117 151 160 181 250 161 134 125

168 170 171 178 183 179 112 124
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01111111100110000101111001000
01100000001010101110111101110
1100010100010010011101010
00110001100010001000

(a) 226 bits
(b) The size has been reduced by 55.9%. (The encoded string is only 44.1% as big as

the original)

7.4 Convert 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9 to fixed-point representation
using (a) two bits for the fractional part, (b) three bits for the fractional part, and (c)
three bits for the fractional part.

(a) 2 bits for the fractional part

1.0 = 00000100
1.1 = 00000100
1.2 = 00000101
1.3 = 00000101
1.4 = 00000110
1.5 = 00000110
1.6 = 00000110
1.7 = 00000111
1.8 = 00000111
1.9 = 00001000

(b) 3 bits for the fractional part

1.0 = 00001000
1.1 = 00001001
1.2 = 00001010
1.3 = 00001010
1.4 = 00001011
1.5 = 00001100
1.6 = 00001101
1.7 = 00001110
1.8 = 00001110
1.9 = 00001111

(c) 4 bits for the fractional part
1.0 = 00010000
1.1 = 00010010
1.2 = 00010011
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1.3 = 00010101
1.4 = 00010110
1.5 = 00011000
1.6 = 00011010
1.7 = 00011011
1.8 = 00011101
1.9 = 00011110

7.5 Write two C routines that, each, take as input two 32-bit fixed-point numbers and
perform addition and multiplication using 4 bits for the fractional part and the
remaining bits for the whole part.

The C code for the fixed-point addition and multiplication:

unsigned long FixedAdd(unsigned long a, unsigned long b)
{
return a + b;

}
unsigned long FixedMul(unsigned long a, unsigned long b)
{
unsigned long result = a * b;
result >>= 4;
return result;

}

7.6 Using any programming language of choice to (a) implement the FDCT and IDCT
equations presented in Section 7.2 using fixed-point arithmetic with 4 bits used for the
fractional part and the remaining bits used for the whole part, (b) use the block of 8 × 8
pixels given in Figure 1.2 (b) as input to your FDCT and obtain the encoded block, (c)
use the output of part (b) as input to your IDCT to obtain the original block, and (d)
compute the percent error between your decoder’s output and the original block.

(a) C code for the fixed-point FDCT and IDCT:

int COSTABLE[8][8] = {
{ 16, 16, 15, 13, 11, 9, 6, 3 },
{ 16, 13, 6, -3, -11, -16, -15, -9 },
{ 16, 9, -6, -16, -11, 3, 15, 13 },
{ 16, 3, -15, -9, 11, 13, -6, -16 },
{ 16, -3, -15, 9, 11, -13, -6, 16 },
{ 16, -9, -6, 16, -11, -3, 15, -13 },
{ 16, -13, 6, 3, -11, 16, -15, 9 },
{ 16, -16, 15, -13, 11, -9, 6, -3 }

};

// 1/sqrt(2) in this fixed point representation is 11
// 1 in this fixed point representation is 16
int C(int h)
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{
if (h==0)
return 11;

else
return 16;

}

// PI in this fixed point representation is 50

int FDCT_fixed(int array[8][8], int u, int v)
{
int total = 0;
int subtotal = 0;

for(int x = 0; x < 8; ++x)
{
for(int y = 0; y < 8; ++y)
{
subtotal = (array[x][y] * COSTABLE[x][u]) >> 4;
subtotal = (subtotal * COSTABLE[y][v]) >> 4;
total += subtotal ;

}
}

// .25 in this fixed point is 4

total = (total * C(u)) >> 4;
total = (total * C(v)) >> 4;
total = (total * 4) >> 4;

return total;
}

int IDCT_fixed(int array[8][8], int x, int y)
{
int total = 0;
int subtotal = 0;

for(int u = 0; u < 8; ++u)
{
for(int v=0; v < 8; ++v)
{
subtotal = (C(u) * C(v)) >> 4;
subtotal = (subtotal * array[u][v]) >> 4;
subtotal = (subtotal * COSTABLE[x][u]) >> 4;
subtotal = (subtotal * COSTABLE[y][v]) >> 4;
total += subtotal;

}
}

total = (total * 4) >> 4;

return total;
}
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(b) Depending on the actual implementation of fixed-point FDCT the results will vary.
The following is a sample generated from the above code.

(c) Depending on the actual implementation of fixed-point IDCT the results will vary.
The following is a sample of the restored original block generated from the above
code.

(d) The percent error between the decoder’s output and the original block using the
above C code was 23.9106%.

7.7 List the modifications made in implementations 2 and 3 and discuss why each was
beneficial in terms of performance.

Implementation 2 modifications:

Addition of a CCDPP co-processor.- The addition of this custom logic frees up over
400,000 instructions on the 8051 as the CCDPP co-processor executes only the
CCDPP very efficiently.

Implementation 3 modifications:

17384 593 -675 -156 380 -1303 175 636

-1260 -79 1843 -1191 -98 -65 310 -109

208 -208 6 -694 387 -71 267 -644

28 -989 -250 -171 551 -376 -296 77

663 190 565 -77 131 -348 87 -132

566 -213 -180 -73 310 -470 -351 213

-306 -133 337 -92 31 26 166 -354

-71 -240 -215 -270 -77 -24 101 -78

1512 2129 1856 1633 1644 1251 1211 3360

1791 1771 2125 1410 1327 1312 1353 1805

1790 1916 2145 1342 1371 1498 1365 1652

2410 2499 2153 1361 2539 1666 1729 1700

1772 1957 2045 1619 2549 1940 1718 1685

1532 1683 1624 1939 2862 2020 1706 1609

1441 2004 2145 2494 3577 2179 1753 1579

2253 2282 2314 2448 2484 2460 1387 1549
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Changed the algorithm to use fixed point representation - This eliminated millions of
instructions generated by the compiler to emulate floating point operations on an
architecture that did not support them.
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CHAPTER 8: State Machine and
Concurrent Process Models

8.1 Define the following terms: finite-state machines, concurrent processes, real-time
systems, and real-time operating system.

Finite State Machine : A model to describe system behavior as a set of possible states
with transistors between states depending on input values.

Concurrent Processes: An independent sub-behavior of a system executing
simultaneously while possibly sharing common data.

Real-time System: Systems that are fundamentally composed of two or more
concurrent processes that execute with stringent timing requirements and cooperate
with each other in order to accomplish a common goal.

Real-time Operating System: The underlying implementations or systems that support
real-time systems.

8.2 Briefly describe three computation models commonly used to describe embedded
systems and/or their peripherals. For each model list two languages that can be used to
capture it.

1. State Machines
These describe behavior as a series of states and trnsitiors between states.
Possbile Languages: C, VHDL

2. Sequential Porgram
A sequential program describes a series of statements iterated and conditionally
executed.
Possible Languages: Java, C++

3. Dataflow Model
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A dataflow model describes a system using a set of nodes which represent
transformation and a set of directed edges representing the flow from one node to
another.
Possible Languages: C++, Java

8.3 Describe the elevator UnitControl state machine in Figure 1.4 using the FSMD model
definition <S, I, O, V, F, H, s0> given in this chapter. In other words, list the set of
states (S), set of inputs (I), and so on.

S is a set of states { going up, idle, going down, door open }
I is a set of inputs { floor, req }
O is a set of ouputs { up, down, open }
V is a set of variables { timer }
F is the next-state function, mapping states and inputs and variable to states

{ going up X req > floor → going up,
going up X !(req > floor) → door open,
idle X req > floor → going up,
idle X req == floor → idle,
idle X !(req > floor ) → going down,
going down X req < floor → going down,
going down X !(req < floor) → door open,
door open X timer < 10 → door open,
door open X !(timer < 10) → idle }

H is the action function mapping current states to outputs and variables
{ going up → up=1 down=0 open=0 + time=0,

idle → up=0 down=0 open=1 + time=0,
going down → up=0 down=1 open=0 + time=0,
door open → up=0 down=0 open=1 + time=1 }

So is the initial state {idle}

8.4 Show how using the process create and join semantics one can emulate the procedure
call semantics of a sequential programming model.

functionA( ){
....

}

void main( ){
...
process_create(functionA);
join(functionA);

}

8.5 List three requirements of real-time systems and briefly describe each. Give examples
of actual real-time systems to support your arguments.
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1. provide means for communication
Within concurrent processes, it is essential for them to communicate with one antoher.

2. synchronization
Concurrent processes may read and write data at the same location in memory, and
therefore synchronization is required to ensure correctness.

3. stringent timing requirements
Processes must produce and respond to data within strict timing specified by the
designer.

8.6 Show why, in addition to ordered locking, two-phase locking is necessary in order to
avoid deadlocks. Give an example and execution trace that results in deadlock if
two-phase locking is not used.

Error: Ordered locking couldn’t lead to deadlock.

8.7 Give pseudo-code for a pair of functions implementing the send and receive
communication constructs. You may assume that mutex and condition variables are
provided.

recieve( S, &data){ send( D, &data){
msg.wait(); write the message to data
process data msg.signal();

} }

8.8 Show that the buffer size in the consumer-producer problem implemented in Figure 1.9
will never exceed one. Re-implement this problem, using monitors, to allow the size of
the buffer to reach its maximum.

Error: FIG 1.9 DOES NOT REFER TO THE CORRECT FIGURE
FIG 1.19 IMPLEMENTS THE CONSUMER PRODUCER PROBLEM
W/MONITORS

8.9 Given the processes A through F in Figure 1.21 (a) where their deadline equals their
period, determine whether they can be scheduled on time using a non-preemptive
scheduler. Assume all processes begin at the same time and their execution times are as
follows: A: 8 ms, B: 25 ms, C: 6 ms, D: 25 ms, E: 10 ms, F: 25 ms. Explain your
answer by showing that each process either meets or misses its deadline.

Process execution time
(ms)

deadline
(ms)

start time
(ms)

end time
(ms)

deadline met
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A 8 25 6 14 yes
B 25 50 24 49 yes
C 6 12 0 6 yes
D 25 100 74 99 yes
E 10 40 14 24 yes
F 25 75 49 74 yes

0 10 20 30 40 50 60 70 90 10080

A B C D E F
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CHAPTER 9: Control Systems

9.1 Explain the difference between open-looped and closed-looped control systems. Why
are we more concerned with closed-looped systems?

In an open-looped control system the controller reads in the reference input then
computes a setting for the actuator. In a closed-looped control system the controller
monitors the error between the plant output and the reference inputs then sets the plant
input accordingly.

9.2 List and describe the eight parts of the closed-loop system. Give a real-life example of
each (other than those mentioned in the book).

a. plant : the physical system to be controlled. An airplane is an example of a
plant.

b. output: the particular physical system aspect we are interested in controlling.
The altitude of an airplane is an example of this.

c. reference input: the desired value we want as output. The altitude set by the pilot
is and example of this.

d. actuator: a device used to control input to the plant. A motor used to control the
angle of an airplane’s flaps is an example of this.

e. controller: a device used to control input to the plant. A microcontroller is an
example of this.

f. disturbance: and additional undesirable input to the plant imposed by the
environment that may cause the plant output to differ from what we would have
expected based on the plant input. Wind is an example of this.

g. sensor: measures the plant output.
h. error detector: determines the difference between the plant output and the

reference input.

9.3 Using a spreadsheet program, create a simulation of the cruise-control systems given in
this chapter, using PI control only. Show simulations (graphs and data tables) for the
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following P and I values. Remember to include throttle saturation in your equations.
You can ignore disturbance. (a) P = 3.3, I = 0. (b) P = 4.0, I = 0 (How do the results
differ from part (a)? Explain!) (c) P = 3.3, I = X. (d) P = 3.3, I = Y. (Choose X and Y to
achieve a meaningful trade-off. Explain that trade-off.

(a) P=3.3, I=0

Car Simulation P=3.3, I=0

time rt et = rt - vt st = st-1 + et ut = Pet + Ist Vt+1= 0.7Vt + 0.5ut vt

0 75 25.00 25.00 40.00 55.00 50.00

1 75 20.00 45.00 45.00 61.00 55.00

2 75 14.00 59.00 45.00 65.20 61.00

3 75 9.80 68.80 32.34 61.81 65.20

4 75 13.19 81.99 43.53 65.03 61.81

5 75 9.97 91.96 32.90 61.97 65.03

6 75 13.03 104.99 43.00 64.88 61.97

7 75 10.12 115.11 33.40 62.12 64.88

8 75 12.88 127.99 42.52 64.74 62.12

9 75 10.26 138.26 33.86 62.25 64.74

10 75 12.75 151.01 42.08 64.61 62.25

11 75 10.39 161.39 34.27 62.37 64.61

12 75 12.63 174.03 41.69 64.50 62.37

13 75 10.50 184.52 34.64 62.47 64.50

14 75 12.53 197.05 41.34 64.40 62.47

15 75 10.60 207.65 34.98 62.57 64.40

16 75 12.43 220.08 41.02 64.31 62.57

17 75 10.69 230.77 35.28 62.66 64.31

18 75 12.34 243.12 40.73 64.23 62.66

19 75 10.77 253.89 35.55 62.73 64.23

20 75 12.27 266.15 40.48 64.15 62.73

21 75 10.85 277.00 35.80 62.81 64.15

22 75 12.19 289.20 40.24 64.08 62.81

23 75 10.92 300.11 36.02 62.87 64.08

24 75 12.13 312.24 40.03 64.02 62.87

25 75 10.98 323.22 36.22 62.93 64.02

26 75 12.07 335.29 39.84 63.97 62.93

27 75 11.03 346.32 36.40 62.98 63.97

28 75 12.02 358.34 39.67 63.92 62.98

29 75 11.08 369.42 36.57 63.03 63.92

30 75 11.97 381.40 39.51 63.87 63.03

31 75 11.13 392.52 36.71 63.07 63.87

32 75 11.93 404.45 39.37 63.83 63.07

33 75 11.17 415.62 36.85 63.11 63.83

34 75 11.89 427.51 39.25 63.80 63.11
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35 75 11.20 438.71 36.97 63.14 63.80

36 75 11.86 450.57 39.13 63.77 63.14

37 75 11.23 461.81 37.07 63.17 63.77

38 75 11.83 473.63 39.03 63.74 63.17

39 75 11.26 484.90 37.17 63.20 63.74

40 75 11.80 496.70 38.94 63.71 63.20

41 75 11.29 507.99 37.26 63.23 63.71

42 75 11.77 519.76 38.85 63.68 63.23

43 75 11.32 531.08 37.34 63.25 63.68

44 75 11.75 542.83 38.78 63.66 63.25

45 75 11.34 554.16 37.41 63.27 63.66

46 75 11.73 565.89 38.71 63.64 63.27

47 75 11.36 577.25 37.48 63.29 63.64

48 75 11.71 588.96 38.65 63.63 63.29

49 75 11.37 600.34 37.53 63.31 63.63

50 75 11.69 612.03 38.59 63.61 63.31

P=3.3, I=0
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(b) P=4.0, I=0

Car Simulation P=4.0, I=0

time rt et = rt - vt st = st-1 + et ut = Pet + Ist Vt+1= 0.7Vt + 0.5ut vt

0 75 25.00 25.00 40.00 55.00 50.00

1 75 20.00 45.00 45.00 61.00 55.00

2 75 14.00 59.00 45.00 65.20 61.00

3 75 9.80 68.80 39.20 65.24 65.20

4 75 9.76 78.56 39.04 65.19 65.24

5 75 9.81 88.37 39.25 65.26 65.19

6 75 9.74 98.12 38.98 65.17 65.26

7 75 9.83 107.95 39.33 65.28 65.17

8 75 9.72 117.67 38.87 65.13 65.28

9 75 9.87 127.53 39.47 65.33 65.13

10 75 9.67 137.21 38.69 65.08 65.33

11 75 9.92 147.13 39.70 65.40 65.08

12 75 9.60 156.73 38.39 64.98 65.40

13 75 10.02 166.75 40.09 65.53 64.98

14 75 9.47 176.22 37.88 64.81 65.53

15 75 10.19 186.41 40.75 65.74 64.81

16 75 9.26 195.67 37.02 64.53 65.74

17 75 10.47 206.13 41.87 66.11 64.53

18 75 8.89 215.03 35.57 64.06 66.11

19 75 10.94 225.97 43.76 66.72 64.06

20 75 8.28 234.24 33.11 63.26 66.72

21 75 11.74 245.98 45.00 66.78 63.26

22 75 8.22 254.20 32.87 63.18 66.78

23 75 11.82 266.02 45.00 66.73 63.18

24 75 8.27 274.29 33.09 63.25 66.73

25 75 11.75 286.04 45.00 66.78 63.25

26 75 8.22 294.26 32.89 63.19 66.78

27 75 11.81 306.07 45.00 66.73 63.19

28 75 8.27 314.34 33.07 63.25 66.73

29 75 11.75 326.09 45.00 66.77 63.25

30 75 8.23 334.31 32.90 63.19 66.77

31 75 11.81 346.12 45.00 66.74 63.19

32 75 8.26 354.39 33.06 63.24 66.74

33 75 11.76 366.14 45.00 66.77 63.24

34 75 8.23 374.37 32.92 63.20 66.77

35 75 11.80 386.17 45.00 66.74 63.20

36 75 8.26 394.43 33.04 63.24 66.74

37 75 11.76 406.19 45.00 66.77 63.24

38 75 8.23 414.43 32.93 63.20 66.77
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39 75 11.80 426.22 45.00 66.74 63.20

40 75 8.26 434.48 33.03 63.24 66.74

41 75 11.76 446.25 45.00 66.77 63.24

42 75 8.23 454.48 32.94 63.21 66.77

43 75 11.79 466.28 45.00 66.74 63.21

44 75 8.26 474.53 33.03 63.23 66.74

45 75 11.77 486.30 45.00 66.76 63.23

46 75 8.24 494.54 32.95 63.21 66.76

47 75 11.79 506.33 45.00 66.75 63.21

48 75 8.25 514.58 33.02 63.23 66.75

49 75 11.77 526.35 45.00 66.76 63.23

50 75 8.24 534.59 32.95 63.21 66.76

The value of P has a stability constraint. In part a, the value of P was low enough that
the system eventually stabilized. In part b, we see that we have exceeded this stability
constraint and therefore will have an unstable system. This is shown by the oscillation
in the graph above.
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(c) P = 3.3, I=X where x is 0.1

Car Siumulation P=3.3, I=0.1

time rt et = rt - vt st = st-1 + et ut = Pet + Ist Vt+1= 0.7Vt + 0.5ut vt

0 75 25.00 25.00 40.00 55.00 50.00

1 75 20.00 45.00 45.00 61.00 55.00

2 75 14.00 59.00 45.00 65.20 61.00

3 75 9.80 68.80 39.22 65.25 65.20

4 75 9.75 78.55 40.03 65.69 65.25

5 75 9.31 87.86 39.51 65.74 65.69

6 75 9.26 97.12 40.28 66.16 65.74

7 75 8.84 105.97 39.78 66.20 66.16

8 75 8.80 114.77 40.51 66.60 66.20

9 75 8.40 123.17 40.04 66.64 66.60

10 75 8.36 131.53 40.74 67.02 66.64

11 75 7.98 139.51 40.29 67.06 67.02

12 75 7.94 147.45 40.95 67.42 67.06

13 75 7.58 155.03 40.53 67.46 67.42

14 75 7.54 162.58 41.15 67.80 67.46

15 75 7.20 169.78 40.75 67.83 67.80

16 75 7.17 176.95 41.35 68.16 67.83

17 75 6.84 183.79 40.96 68.19 68.16

18 75 6.81 190.60 41.53 68.50 68.19

19 75 6.50 197.10 41.17 68.53 68.50

20 75 6.47 203.57 41.70 68.82 68.53

21 75 6.18 209.75 41.36 68.86 68.82

22 75 6.14 215.89 41.87 69.13 68.86

23 75 5.87 221.76 41.54 69.16 69.13

24 75 5.84 227.60 42.02 69.43 69.16

25 75 5.57 233.17 41.71 69.45 69.43

26 75 5.55 238.72 42.17 69.70 69.45

27 75 5.30 244.01 41.88 69.73 69.70

28 75 5.27 249.28 42.31 69.97 69.73

29 75 5.03 254.31 42.03 69.99 69.97

30 75 5.01 259.32 42.45 70.22 69.99

31 75 4.78 264.10 42.18 70.25 70.22

32 75 4.75 268.85 42.58 70.46 70.25

33 75 4.54 273.39 42.32 70.48 70.46

34 75 4.52 277.91 42.70 70.69 70.48

35 75 4.31 282.22 42.46 70.71 70.69

36 75 4.29 286.51 42.81 70.90 70.71

37 75 4.10 290.61 42.58 70.92 70.90

38 75 4.08 294.69 42.92 71.11 70.92
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39 75 3.89 298.58 42.70 71.13 71.11

40 75 3.87 302.45 43.03 71.30 71.13

41 75 3.70 306.15 42.82 71.32 71.30

42 75 3.68 309.83 43.12 71.49 71.32

43 75 3.51 313.35 42.93 71.50 71.49

44 75 3.50 316.84 43.22 71.66 71.50

45 75 3.34 320.18 43.03 71.68 71.66

46 75 3.32 323.50 43.31 71.83 71.68

47 75 3.17 326.67 43.13 71.85 71.83

48 75 3.15 329.82 43.39 71.99 71.85

49 75 3.01 332.84 43.22 72.00 71.99

50 75 3.00 335.83 43.47 72.14 72.00

(d) P= 3.3, I=Y where y is 0.9

Car Simulation P=3.3, I=1.0

time rt et = rt - vt st = st-1 + et ut = Pet + Ist Vt+1= 0.7Vt + 0.5ut vt

0 75 25.00 25.00 40.00 55.00 50.00

1 75 20.00 45.00 45.00 61.00 55.00

2 75 14.00 59.00 45.00 65.20 61.00

3 75 9.80 68.80 45.00 68.14 65.20

4 75 6.86 75.66 45.00 70.20 68.14

5 75 4.80 80.46 45.00 71.64 70.20

P=3.3, I=0.1
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6 75 3.36 83.82 45.00 72.65 71.64

7 75 2.35 86.18 45.00 73.35 72.65

8 75 1.65 87.82 45.00 73.85 73.35

9 75 1.15 88.98 45.00 74.19 73.85

10 75 0.81 89.78 45.00 74.44 74.19

11 75 0.56 90.35 45.00 74.60 74.44

12 75 0.40 90.74 45.00 74.72 74.60

13 75 0.28 91.02 45.00 74.81 74.72

14 75 0.19 91.21 45.00 74.86 74.81

15 75 0.14 91.35 45.00 74.91 74.86

16 75 0.09 91.45 45.00 74.93 74.91

17 75 0.07 91.51 45.00 74.95 74.93

18 75 0.05 91.56 45.00 74.97 74.95

19 75 0.03 91.59 45.00 74.98 74.97

20 75 0.02 91.61 45.00 74.98 74.98

21 75 0.02 91.63 45.00 74.99 74.98

22 75 0.01 91.64 45.00 74.99 74.99

23 75 0.01 91.65 45.00 74.99 74.99

24 75 0.01 91.65 45.00 75.00 74.99

25 75 0.00 91.66 45.00 75.00 75.00

26 75 0.00 91.66 45.00 75.00 75.00

27 75 0.00 91.66 45.00 75.00 75.00

28 75 0.00 91.66 45.00 75.00 75.00

29 75 0.00 91.66 45.00 75.00 75.00

30 75 0.00 91.67 45.00 75.00 75.00

31 75 0.00 91.67 45.00 75.00 75.00

32 75 0.00 91.67 45.00 75.00 75.00

33 75 0.00 91.67 45.00 75.00 75.00

34 75 0.00 91.67 45.00 75.00 75.00

35 75 0.00 91.67 45.00 75.00 75.00

36 75 0.00 91.67 45.00 75.00 75.00

37 75 0.00 91.67 45.00 75.00 75.00

38 75 0.00 91.67 45.00 75.00 75.00

39 75 0.00 91.67 45.00 75.00 75.00

40 75 0.00 91.67 45.00 75.00 75.00

41 75 0.00 91.67 45.00 75.00 75.00

42 75 0.00 91.67 45.00 75.00 75.00

43 75 0.00 91.67 45.00 75.00 75.00

44 75 0.00 91.67 45.00 75.00 75.00

45 75 0.00 91.67 45.00 75.00 75.00

46 75 0.00 91.67 45.00 75.00 75.00

47 75 0.00 91.67 45.00 75.00 75.00

48 75 0.00 91.67 45.00 75.00 75.00

49 75 0.00 91.67 45.00 75.00 75.00
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50 75 0.00 91.67 45.00 75.00 75.00

The I value in problem (c) and (d) was chosen to show steady state error elimination.
One problem associated with this is if I was increased too much the response result
became unstable or oscilated.

9.4 Write a generic PID controller in C.

typedef struct PID_DATA {
double Pgain, Dgain, Igain;
double sensor_value_previous; // find the derivative
double error_sum; // cumulative error

}

double PidUpdate(PID_DATA *pid_data, double sensor_value, double
reference_value)
{

double Pterm, Iterm, Dterm;
double error, difference;
error = reference_value – sensor_value;
Pterm = pid_data->Pgain * error; /* proportional term*/
pid_data->error_sum += error; /* current + cumulative*/
// the integral term
Iterm = pid_data->Igain * pid_data->error_sum;
difference = pid_data->sensor_value_previous –
sensor_value;
// update for next iteration

P=3.3, I=0.9
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pid_data->sensor_value_previous = sensor_value;
// the derivative term
Dterm = pid_data->Dgain * difference;

return (Pterm + Iterm + Dterm);

}

void main()
{

double sensor_value, actuator_value, error_current;
PID_DATA pid_data;
PidInitialize(&pid_data);
while (1) {

sensor_value = SensorGetValue();
reference_value = ReferenceGetValue();
actuator_value =

PidUpdate(&pid_data,sensor_value,reference_value);
ActuatorSetValue(actuator_value);

}
}
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CHAPTER 10: IC Technology

10.1 Using the NAND gate (shown in Figure 1.1) as building block, (a) draw the circuit
schematic for the function F = xz + yz', and (b) draw the top-down view of the circuit
on an IC (make your layout as compact as possible.)

(a) Transistor level circuit schematic for F = xz + yz'

z

z

x

z

y

x

y

F = xz+yz’
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(b) Layout for F = xz + yz'

10.2 Draw (a) the transistor-level circuit schematic for a two-input multiplexor, and (b) the
top-down view of the circuit on an IC (make your layout as compact as possible.)

The function for a two-input multiplexor with inputs x and y and select input z, is F =
xz+yz’. Therefore, the answer for this question is identical to question 10.1.

10.3 Implement the function F = xz + yz' using the gate array structure given in Figure 1.6
(a).

The gate array structure for the function F = xz + yz'

zx
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vdd
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CHAPTER 11: Design Technology

11.1 List and describe three general approaches to improving designer productivity.

1. Automation: The task of using a computer program to replace manual design effort.

2. Reuse: The process of using pre-designed components rather than designing those
components again.

3. Verification: The task of ensuring the correctness and completeness at each design
step.

11.2 Describe each tool that has enabled the elevation of software design and hardware
design to higher abstraction levels.

1. Assemblers and Linkers: Tools that automatically translate assembly instructions,
consisting of instructions written using letters and numbers to represent symbols, into
equivalent machine instructions.

2. Compilers: Compilers automatically translate sequential programs, written in high-
level languages like C, into equivalent assembly instructions.

3. Logic Synthesis Tools: Automatically converts logic equations or FSM into logic
gates.

4. RT Synthesis Tools: Automatically convert FSMD’s into FSMs, logic equations, and
pre-designed RT components like registers and adders.

5. Behavioral Synthesis Tools: Tools that convert sequential programs into FSMDs.

11.3 Show behavior and structure (at the same abstraction level) for a design that finds
minimum of three input integers, by showing the following descriptions: a sequential
program behavior, a processor/memory structure, a register–transfer behavior, a
register/FU/MUX structure, a logic equation/FSM behavior, and finally a gate/flip-flop
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structure. Label each description and associate each label with a point on Gajski’s
Y-chart.

NOTE: Answer will vary.

11.4 Develop an example of a Boolean function that can be implemented with fewer gates
when implemented in more than two levels (your designs should have roughly 10 gates,
not hundreds!). Assuming two transistors per gate input, and gate delay of 10
nanoseconds, create a single plot showing size versus delay for both designs.

NOTE: Answer will vary.

11.5 Show how to partition a single finite-state machine into two smaller finite-state
machines, which might be necessary to achieve acceptable synthesis tool run time.
Hint: you’ll need to introduce a couple new signals and states.

NOTE: Answer will vary.

11.6 Define hardware/software codesign.

Hardware/software codesign is the joint consideration of general purpose and single-
purpose processors by the same automatic tools.

11.7 Write a small program that reads a file of integers and outputs their sum. Write another
program that does not add the integers using the built-in addition operator of a
programming language, but instead “simulates” addition by using an addition function
that converts each integer to a string of 0s and 1s, adds the strings by mimicking binary
addition, and converts the binary result back to an integer. Compare the performance of
the native program to the performance of the simulation program on a large file.

C++ program using built-in add:

#include <iostream>

int main()
{

long a;
long total = 0;

while( cin >> a ) {
total += a;

}

cout << endl << "total: " << total << endl;
return 0;

}



Embedded System Design 87

C++ program using simulated add:

#include <iostream>

void add(long &total, long a)
{

char total_b[33] = "00000000000000000000000000000000";
char a_b[33] = "00000000000000000000000000000000";
char x, y, cin;
int i;

// conver to char string represntation
for(i=0;i<32;i++) {

if( total & (0x0001 << i) ) {
total_b[i] = '1';

}
if( a & (0x0001 << i) ) {

a_b[i] = '1';
}

}

cin = '0';
for(i=0; i<32; i++) {

x = total_b[i];
y = a_b[i];
if( x == '0' && y == '0' && cin == '0' ) {

total_b[i] = '0';
cin = '0';

}
else if( x == '0' && y == '0' && cin == '1' ) {

total_b[i] = '1';
cin = '0';

}
else if( x == '0' && y == '1' && cin == '0' ) {

total_b[i] = '1';
cin = '0';

}
else if( x == '0' && y == '1' && cin == '1' ) {

total_b[i] = '0';
cin = '1';

}
else if( x == '1' && y == '0' && cin == '0' ) {

total_b[i] = '1';
cin = '0';

}
else if( x == '1' && y == '0' && cin == '1' ) {

total_b[i] = '0';
cin = '1';

}
else if( x == '1' && y == '1' && cin == '0' ) {

total_b[i] = '0';
cin = '1';

}
else if( x == '1' && y == '1' && cin == '1' ) {

total_b[i] = '1';
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cin = '1';
}

}

// convert back to integer representation
total = 0;
for(i=0;i<32;i++) {

if( total_b[i] == '1' ) {
total |= (0x0001 << i);

}
}

}

int main()
{

long a;
long total = 0;

while( cin >> a ) {
add(total, a);

}

cout << endl << "total: " << total << endl;
return 0;

}

11.8 If a simulation environment can simulate 1,000 instructions per second, estimate how
long the environment would take to simulate the boot sequence of Windows running on
a modern PC. Even a very rough estimate is acceptable, since we are interested in the
order of magnitude of such simulation.

A 200MHz Pentium processor required 16.75s to boot Windows ME.

200MHz = 2.00 * 108 instruction/second
16.75 s = 3.35 * 109 instructions
Simulation time = 3.35 * 106 seconds

Thus, the simulation environment would require 930.56 hours to boot Windows ME.

NOTE: Answers will vary.

11.9 What is hardware/software co-simulation? What is a key method for speeding up such
simulation?

Hardware/software co-simulation: Simulation that is designed to hide the details of the
integration of an ISS and HDL simulator. In order to minimize the communication
between the ISS and the HDL simulator, we can model memory in the both the ISS and
the HDL simulator. Each simulator can use its own copy of the memory without
communicating with other simulator most of the time.
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11.10 Show the correspondence of the three types of cores with Gajski’s Y-Chart.

Soft core: Soft cores relate to the behavior axis of the Y-chart.
Firm core: Firm cores relate to the structural axis of the Y-chart.
Hard core: Hard cores relate to the physical axis of the Y-chart.

11.11 Describe the new challenges created by cores for processor developers as well as users.

For core processors, pricing models and IP protection have become major challenges.
Pricing for IP cores can be done using a fixed price or a royalty-based model. Each
prcingin model that is employed comes with accompanying challenges of enforcing
those models, and extensive licensing agreements must often be create. IP protection
has become a challenge because cores are sold in an electronic format, so copying of
the design has become much easier. For users of cores, they will face the challenges of
dealing with licensing agreements, which often require legal assistance due to the
complexity of them. In additions, users will have to spend extra design efforts,
especially with soft cores. Soft core must be synthesized and tested and even minor
differences in synthesis tools can lead to problems.

11.12 List major design steps for building the digital camera example of Chapter 7 assuming:
(a) a waterfall process model, (b) a spiral-like Y-chart process model.

a.) Using the waterfall design process model, the major design steps for the digital
camera would are as follows. First, the designer would create an extensive
requirements document that would be used to create the behavioral model for the
digital camera. This model would likely be create in high-level language such as C
or C++. Once the algorithms of the behavioral model are completed, the designer
would convert that description to a structural HDL description. Once the HDL
description is completed, the designer’s next task would be to synthesize that
design down to gates and further verify it works correctly through gate-level
simulation. Finally, the design could map the get-level design to an physical layout
and test the layout using SPICE simulations. The final step would be to actually
test the digital camera’s prototype IC.

(b) In the spiral model, instead of describing the complete function of the digital
camera in the beginning, the design will start by describing the basic operation of
it. This basic operation may be to only provide the ability to capture, encode and
decode a single image. With this basic requirement, the designer will spend time
creating the behavioral model. Once the basic behavioral model is completed, it
can be converted to a structural HDL implementation. Furthermore, the structural
design will be converted to a get-level description and ultimately a physical
prototype. This prototype will be used to test the functionality of the basic design
and get a better understanding of the other features that should be added. For
example, running the actual prototype will allow the designer to test the timing of
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the image capture, encoding, and decoding. Using this information, the designer
can modify the requirements of the design to meet the new timing requirements.

NOTE: Answer will vary depending on what the student chose as the major design
steps.


