- An introduction to programming
. the Microchip PIC in C
Y by Nigel Gardner

Bluebird Electronics

An introduction to programming
the Microchip PIC in C
by Nigel Gardner

PIC C Bluebird Electronics

he information contained in this publication regarding device

applications and the like is intended by way of suggestion only and
may be superseded by updates. No representation or warranty i1s given
and no liability is assumed by Bluebird Eiectronics, Microchip
Technology Inc., CCS, Hitech or Inprise Corporation with respect to the
accuracy or use of such information, or infringement of patents arising
from such use or their compliance to EMC standards or otherwise. Use
of Bluebird Electronics, Microchip Technology Inc., CCS, Hitech or
Inprise Corporation products as critical components in life support
systems 1s not authorised except with express written approval by
Bluebird Electronics, Microchip Technology Inc., CCS, Hitech or Inprise
Corporation. No licenses are conveyed, implicitly or otherwise, under
intellectual property rights.

Copyright © Bluebird Electronics 1998. All rights reserved. Except as
permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of
Bluebird Electronics, with the exception of the program listings which
may be entered, stored, and executed in a computer system, but may
not be reproduced for publication.

Typeset and printed in the UK by: Character Press Limited, Tel: 01462
896500. First printed in 1998.

Circuit diagrams produced with Labcentre Isis lllustrator. Flowcharts
produced with Corel Flow.

Preface PIC C

B Preface

hanks go to Rodger Richey of Microchip Technology Inc. for the use

of his notes on C for the PICmicro, Clyde at Hi Tech for the copy of
their C compiler, Nan Borreson of Inprise Corporation for TurboC++ Lite
and Val Belltamy for proof reading this book.

This book is dedicated to my wife June and daughter Emma.

—[—

SIC C

h Contents

Contents

Introduction
History
Why use C ?
PC Based versus PIC Based Program Development
Product Development
Terminology
Trying and Testing Code
C Coding Standards
Basics

1 C Fundamentals
Structure of C programs
Components of a C program
#pragma
main()

#include

printf Function
Variables
Constants
Comments
Functions

C Keywords

2 \Variables
Data Types
Variable Declaration
Variable Assignment
Enumeration
typedef
type Conversions

3 Functions

Functions
Function Prototypes

Contents

Using Function Arguments
Using Functions to return values
Classic and Modern Function Declarations

4 Operators
Arithmetic
Relational
Logical
Bitwise
Increment and Decrement
Precedence of

5 Program Control Statements
if
if-else
?
for Loop
while Loop
do-while Loop
Nesting Program Control Statements
break
continue
switch
null
return

6 Arrays / Strings
One Dimentional Arrays
Strings
Multidimensional Arrays
Initialising Arrays
Arrays of Strings

7 Pointers

Pointer basics
Pointers and arrays
Passing pointers to functions

l—

PIC C Contents

8 Structures / Unions
Structure basics
Pointers to Structures
Nested Structures
Union basics
Pointers to Unions

9 PIC Specific C
Inputs and Outputs

Mixing C and Assembler

A/D Conversion

Data Communications

PWM

LCD Dnwving

interrupts

Where next and other information

Introduction PIC C

N Introduction

Why use C?

The C lanmiage was developed at the Bell Labs in the late 60’s by
Dennis Ritchie and Brian Kernighan. One of the first platforms for
implementation was the PDP-11 running under a UNIX environment.
Since its introduction, it has evolved and been standardised throughout
the computing industry as an established development language. The
PC has become a cost effective development platform using C++ or
other favoured versions of the ANSII standard.

C is a portable language intended to have minimal modification when
transferring programs from one computer to another. This is fine when
working with PC’s and mainframes, but Microcontrollers and
Microprocessors are a different breed. The main program flow will
basically remain unchanged, but the various setup and port / peripheral
control will be micro specific. An example of this is that the port
direction registers on a PIC are set 1=Input 0=Output, whereas the H8
is O=Input and 1=Output.

The use of C Iin Microcontroller applications has been brought about by
manufacturers providing larger program and ram memory areas in
addition to faster operating speeds.

An example quoted to me - as a non believer - was: to create a
stopclock function would take 2/3 days in C or 2 weeks in assembler.
‘Ah’ | hear you say as you rush to buy a C compiler - why do we bother
to write in assembler? It comes down to code efficiency - a program
written in assembler is typically 80% the size of a C version. Fine on the
larger program memory sized devices but not so efficient on smaller
devices. You pay the money and take your PIC!!

Introduction

PC Based versus PIC Based Program
Development

Engineers starting development on PC based products have the luxuary
of basic hardware pre-wired i.e. keyboard, processor, memory, /O,
printer and visual display (screen). The product development then
comes down to writing the software and debugging the errrrrrus.

Those embarking on a PIC based design have to create all the interface
to the outside world in the form of input and output hardware. A PC
programmer could write the message ~“Hello World~ and after
compiling, have the message displayed on the screen. The PIC
programmer would have to build an RS232 interface, set up the comm
port within the PIC and attach the development board to a comm port
on a PC to enable the message to be viewed.

‘Why bother’ | hear you say (and so did I) - it comes down to portability
of the end product. If we could get the whole of a PC in a 40 pin DIL
package (including monitor and keyboard) we would use it, but as
today’s miniaturisation does not reach these limits, we will continue to
use microcontrollers like the PIC for low cost and portable applications.

The development tools for PIC based designs offer the developer
basically the same facilities as the PC based development with the
exception of the graphics libraries.

PRODUCT DEVELOPMENT

Product development is a combination of luck and experience. Some of
the simplest tasks can take a long time to develop and perfect in
proportion to the overall product - so be warned where tight timescales
are involved.

To design a product one needs: time - peace and quiet - a logical mind
and most important of all a full understanding of the requirements.

| find the easiest way to begin any development 1s to start with a clean
sheet of paper together with the specification or idea.

Introduction PIC C

Start by drawing out a number of possible solutions and examine each
to try to find the simplest and most reliable option. Don’t discard the
other ideas at this stage as there are possibly some good thoughts
there.

Draw out a flow chart, block diagram, I/O connection plan or any
suitable drawing to get started.

Build up a prototype board or hardware mimic board with all the 1/0
configured. Don’t forget i/0 pins can be swapped to make board layout
easier at a later date - usually with minimal modification to the software.

Then start writing the code - In testable blocks - and gradually build up
your program. This saves trying to debug 2000 lines of code in one go!

If this is your first project - THEN KEEP IT SIMPLE - try out just
switching a LED or two on and off from push buttons to get familiar with
the instructions, assembly technique and debugging before attempting
a mammoth project.

Build up the program in simple stages - testing as you go. Rework your
flowchart to keep it up to date.

THE IDEA

An idea is born - maybe by yourself in true EUREKA style or by
someone else having a need for a product - the basic concept is the
same.

Before the design process starts, the basic terminology needs to be
understood - like learning a new language. So in the case of
Microcontroller designs based on the PIC, the PIC language
(instruction set, terms and development kit) needs to be thoroughly
understood before the design can commence.

Now let's get started with the general terms, some facts about the PIC
and the difference between Microprocessor and Microcontroller based
systems.

—j—

Introduction

Terminology

Let’s start with some basic terminology used.

Microcontroller A lump of plastic, metal and purified sand which,
without any software, does nothing When software controls a
microcontrolier, it has almost unlimited applications.

I/O A connection pin to the outside world which can be configured as
input or output. I/O is needed in most cases to allow the microcontrolier
to communicate, control or read information.

Software The information that the Microcontroller needs to operate or
run. This needs to be free of bugs and errors for a successful application
or product. Software can be written in a variety of languages such as
C, Pascal or Assembier (one level up from writing your software in
binary).

Hardware The Microcontroller, memory, interface components,
power supplies, signal conditioning circuits and all the components -
connected to it to make it work and interface to the outside world.
Another way of looking at (especially when it does not work) is that you
can kick hardware.

Simulator The MPLAB development environment has its own inbuilt
simulator which allows access to some of the internal operation of the
microcontroller. This is a good way of testing your designs If you know
when events occur. If an event occurs ‘somewhere about there’, you
might find the simulator restrictive. Full trace, step and debug facilities
are, however, available. Another product for 16C5x development is the
SIM ICE - a hardware simulator offering some of the ICE features but at
a fraction of the cost.

In Circuit Emulator (ICEPIC or PIC MASTER) - a very useful piece of
equipment connected between your PC and the socket where the
Microcontroller will reside. It enables the software to be run on the PC
but looks like a Microcontroller at the circuit board end. The ICE allows
you to step through a program, watch what happens within the micro
and how it communicates with the outside world.

—l—

Introduction

Programmer A unit to enable the program to be loaded into the
microcontroller's memory which allows it to run without the aid of an
ICE. They come in all shapes and sizes and costs vary. Both the
PICSTART PLUS and PROMATE Ii from Microchip connect to the serial
port.

Source File A program written in a language the assembler and you
understand. The source file has to be processed before the
Microcontroller will understand it.

Assembler / Compiler A software package which converts the Source
file into an Object file. Error checking is built in, a heavily used feature
in debugging a program as errors are flagged up during the assembly
process. MPASM is the latest assembier from Microchip handling all the
PIC family. C Compilers covered in this book are the CCS and HI
TECH.

Object File This is a file produced by the Assembler / Compiler and
is in a form which the programmer, simulator or ICE understands to
enable it to perform its function. File extension is .OBJ or .HEX
depending on the assembler directive.

List File This is a file created by the Assembler /Compiler and contains
all the instructions from the Source file together with their hexadecimal
values alongside and comments you have written. This is the most
useful file to examine when trying to debug the program as you have a
greater chance of following what is happening within the software than
the Source file listing. The file extension is .LST

Other Files The error file (ERR) contains a list of errors but does not
give any indication as to their origin. The .COD file is used by the
emulator.

Bugs Errors created free of charge by you. These range from
simpel typin errus to incorrect use of the software language syntax
errors. Most of these bugs will be found by the compiler and shown up
in a .LST file, others will have to be sought and corrected by trial and
error.

B
’ PIC C ” Introduction

Microprocessor

A microprocessor or digital computer is made up of three basic sections:
CPU, I/0 and Memory - with the addition of some support circuitry.

Each section can vary in complexity from the basic to all bells and
whistles.

I
i) . 7%“”‘?‘7 o
DIGITAL MEMORY
PWM \ \ RAM
ANALOG L EPROM
RS232 ~ S EEPROM
P —— S
ADDRESS ADDRESS
— Y
CPU
— - [4,8, 16 BIT

|

\

-

WATCHDOG
V TIMER 1 EOSCILLATOR

TYPICAL MICROPROCESSOR SYSTEM

Taking each one in turn:-

input/output (1/0) can comprise digital, analogue and special functions
and is the section which communicates with the outside world.

The central processor unit (CPU) is the heart of the system and can
work in 4, 8 or 16 bit data formats to perform the calculations and data
manipulation.

The memory can be RAM, ROM, EPROM, EEPROM or any
combination of these and is used to store the program and data.

~—~

Introduction o PIC C

An oscillator is required to drive the microprocessor. lts function is to
clock data and instructions into the CPU, compute the results and then
output the information. The oscillator can be made from discrete
components or be a ready made module.

Other circuitry found associated with the microprocessor are the watch
dog timer - to help prevent system latchup, buffering for address and
data busses to allow a number of chips to be connected together
without deteriorating the logic levels and decode logic for address and
I/0 to select one of a number of circuits connected on the same bus.

Itis normal to refer to a Microprocessor as a product which is mainly the
CPU area of the system. The I/0O and memory would be formed from
separate chips and require a Data Bus, Address Bus and Address
Decoding to enable correct operation.

Microcontrollers

The PIC, on the other hand, is a Microcontroller and has all the CPU,
memory, oscillator, watchdog and 1/O incorporated within the same chip.
This saves space, design time and external peripheral timing and
compatibility problems, but in some circumstances can limit the design
to a set memory size and I/O capabilities.

The PIC family of microcontrollers offers a wide range of /0, memory
and special functions to meet most requirements of the development
engineer.

You will find many general books on library shelves exploring the design
of microcontrollers, microprocessors and computers, so the subject will
not be expanded or duplicated here other than to explain the basic
differences.

Why use the PIC?

Code Efficiency The PIC is an 8 bit Microcontroller based on the
Harvard architecture - which means there are separate internal busses
for memory and data. The throughput rate is therefore increased due to
simultaneous access to both data and program memory. Conventional
microcontroliers tend to have one internal bus handling both data and

Introduction

program. This slows operation down by at least a factor of 2 when
compared to the PIC.

Safety All the instructions fit into a 12 or 14 bit program memory
word. There is no likelihood of the software jumping into the DATA section
of a program and trying to execute DATA as instructions. This can occur
in a non Harvard architecture microcontroller using 8-bit busses.

Instruction Set There are 33 instructions you have to learn in order
to write software for the 16C5x family and 35 for the 16Cxx devices. All
the instructions used by the PIC are based on registers and are 12 bits
in length for the 16C5x family and 14 bits wide for the 16Cxx family. Each
instruction, with the exception of CALL, GOTO or bit testing instructions
(BTFSS, INCFSZ), executes in one cycle.

Speed The PIC has an internal divide by 4 connected between
the oscillator and the internal clock bus. This makes instruction time
easy to calculate, especially if you use a 4 MHz crystal. Each instruction
cycle then works out at 1 uS. The PIC is a very fast micro to work with
e.g. a 20MHz crystal steps through a program at 5 million instructions
per second! - almost twice the speed of a 386SX 33!

Static Operation The PIC is a fully static microprocessor; in other
words, if you stop the clock, all the register contents are maintained. In
practice you would not actually do this, you would place the PIC into a
Sleep mode - this stops the clock and sets up various flags within the
PIC to allow you to know what state it was in before the Sleep. In Sleep,
the PIC takes only its standby current which can be less the 1 uA.

Drive Capability The PIC has a high output drive capability and can
directly drive LEDs and triacs etc. Any I/O pin can sink 25mA, or 100mA
for the whole device.

Options A range of speed, temperature, package, I/O lines, timer
functions, serial comms, A/D and memory sizes is available from the
PIC family to suit virtually all your requirements.

Versatility The PIC is a versatile micro and in volume is a low
cost solution to replace even a few logic gates; especially where space
is at a premium

Introduction

{s)iessydusd
sS|od
sHod O/
IMo0L
N
X

18]UN0D/X00|D

Hsd

XN
Bey SNLVLS

1ppy
Jalipyl

s1e1sibay aji4

WVvH

PPy WyH

sng eleg

uMov.s
]

IMOVLS

eunog weiboly pr—————— >

Jswi] dn-peig
101811108 O uoijeIausy)
jos8y Burwn g
UQ-18MO
~ Jouny
Bopuatem [oljuoD
< 18894 g 8podag
no-umoug uononnsul
1ppy 198.1Q

fay uouonisuy

sng
weiboid

Alows i\
weiboid

NOoHd3

BASIC PIC BLOCK DIAGRAM

L PIC T Introduction

Security The PIC has a code protection facility which i1s one of the
best in the industry. Once the protection bit has been programmed, the
contents of the program memory cannot be read out in a way that the
program code can be reconstructed.

Development The PIC is available in windowed form for development
and OTP (one time programmable) for production. The tools for
development are readily available and are very affordable even for the
home enthusiast

Trying and Testing Code

Getting to grips with C can be a daunting task and the initial outlay for a
C compiler, In Circuit Emulator and necessary hardware for the PIC can
be prohibitive at the evaluation stage of a project. The C compiler
supplied on this disk was obtained from the Internet and is included as
a test bed for code learning. Basic code examples and functions can be
tried, tested and viewed before delving into PIC specific C compilers
which handle I/O etc.

C Coding Standards

Program writing is like building a house - If the foundations are firm, the rest
of the code will stack up. If the foundations are weak, the code will fall over
at some point or other. The following recommendations were taken from
a C++ Standards document and have been adapted for the PIC.

Names - make them fit their function

Names are the heart of programming so make a name appropriate to its
function and what it’s used for in the program.

Use mixed case names to improve the readability

ErrorCheck is easier than ERRORCHECK
Prefix names with a lowercase letter of their type, again to improve
readability:-

g Global gLog;
r Reference rStatus () ;
s Static sValuelIn;

Introduction . =

Braces {}
Braces or curly brackets can be used in the traditional UNIX way

if (condition) ({

or the preferred method
if (condition)

Tabs and Indentation

Use spaces in place of tabs as the normal tab setting of 8 soon uses up
the page width. Indent text only as needed to make the software
readable. Also, tabs set in one editor may not be the same settings in
another - make the code portable.

Line Length
Keep line lengths to 78 characters for compatibility between monitors
and printers.

Else If Formatting
Include an extra Else statement to catch any conditions not covered by
the preceding if’s

if (condition)

{

}

else if (condition)

....... /* catches anything else not covered above

Introduction

Condition Format

Where the compiller allows it, always put the constant on the left hand
side of an equality / inequality comparison. If one = is omitted, the
compiler will find the error for you. The value is also placed in a
prominent place.

if (6== ErrorNum)

Initialise All Variables
Set all variables to a known values to prevent ‘floating or random
conditions’

Comments

Comments create the other half of the story you are writing. You know
how your program operates today but in two weeks or two years will you
remember, or could someone else follow your program as it stands
today?

Use comments to mark areas where further work needs to be done,
errors to be debugged or future enhancements to the product.

Basics

All computer programs have a start. The start point in Microcontrollers
is the reset vector. The 14 bit core (PIC16Cxx family) reset at 00h, the
12 bit core (PIC16C5x and 12C50x) reset at the highest point in
memory - 1FFh, 3FFh, 7FFh.

The finish point would be where the program stops If run only once e.qg.
a routine to set up a baud rate for communications. Other programs will
loop back towards the start point such as traffic light control. One of the
most widely used first programming examples in high level languages
like Basic or C is printing ‘Hello World’ on the computer screen.

Using C and a PC is straightforward as the screen, keyboard and
processor are all interconnected. The basic hooks need to be placed in
the program to link the program to the peripherals. When developing a
program for the PIC or any microprocessor / microcontroller system, you
need not only the software hooks but also the physical hardware to
connect the micro to the outside world. Such a system is shown below.

Introduction L PIcC C

PC ICE M\

COMMS ———M8M8M8 TARGET BOARD ——WO —

Using such a layout enables basic 1/0 and comms to be evaluated,
tested and debugged. The use of the ICE, though not essential, speeds
up the development process many fold and so reduces the overall
development costs and engineer’s headaches. The initial investment
may appear excessive when facing the start of a project, but time saved
in developing and debugging is soon outstripped.

The hardware needed to evaluate a design can be a custom made PCB,
protoboard or an off the shelf development board such as our PIC
Millennium Board (someone had to do one!) The Millennium board
contains all the basic hardware to enable commencement of most
designs while keeping the initial outlay to a minimum.

Assemble the following hardware in whichever format you prefer. You
WILL need a PIC programmer such as the PICSTART Plus as a minimal
outlay in addition to the C compiler.

A simple program | use when teaching engineers about the PIC 1s the
‘Press button - turn on LED’. Start with a simple code example - not
2000 lines of code!

In Assembler this would be :-

main btfss porta,switch; test for switch closure
goto main ; loop until pressed

RN ~ 1 [il =20 Introduction
bsf portb,led ; turn on led
ipl btfsc porta,switch; test for switch open
goto 1lpl ; loop until released
bcf portb,led ; turn off led
goto main ; loop back to start
in C this converis to
main()
¢
set_tris_b(0x00); // set port b as outputs
while(true)
{
if (input (PIN_AOQ)) // test for switch closure
output_high(PIN_BO); // if closed turn on led
else
output_low(PIN_BOQ); // if open turn off led

When assembled, the code looks like this:-

main()
{
set_tris b(0x00);
0007 MOVLW OO0
0008 TRIS 6
while(true)
{
if (input(PIN_AO0))
0009 BTFSS 05,0
000A GOTO 00D
output_high(PIN_BO0);
000B BSF 06,0
else
000C GOTO 00E
output_low(PIN BO);
000D BCF 06,0

000E GOTO 009

Introduction

As you can see, the compiled version takes more words in memory - 14
In C as opposed to 9 in Assembler. This is not a fair example on code
but as programs get larger, the more efficient C becomes in code usage.

>
-0
O
-0
O
O
-0
T
« z
pd o
£ o
14 D 5
1908
v
N 7
L g
P_DI_—“. 2|afa(sls(8la(e] ole|=j2|=[z|e|®
t Ba3B3585 858838885
5§
58
Jan A
I = [@ 3 ss e
3
g
©
_ aaa =3
m 2
u
&

D§ Ei
o
¥l0000
g
2 L alele
H

zx
a
T ax —
3 2x
g
Qx

A
1K

Sswr
P e
swe
L
SW3
1
£
/.

c3
78105

g
ano
:
>
N o
K]
+ JaN

- PIC C

Bluebird Electronics

NOTES

C Fundamentals

b C Fundamentals

his chapter presents some of the key aspects of the C programming

language. A quick overview of each of these aspects will be given.
The goal is to give you a basic knowledge of C so that you can
understand the examples in the following chapters.

The topics discussed are:
Program structure
Components of a C program
#pragma
Main
#include directive
printf statement
Variables
Constants
Comments
Functions
C keywords

___,—l_

C Fundamentals

1.1 The Structure of C Programs

All C programs contain preprocessor directives, declarations,
definitions, expressions, statements and functions.

Preprocessor directive

A preprocessor directive is a command to the C preprocessor (which is
automatically invoked as the first step in compiling a program). The two
most common preprocessor directives are the #define directive, which
substitutes text for the specified identifier, and the #include directive,
which includes the text of an external file into a program.

Declaration

A declaration establishes the names and attributes of variabies,
functions and types used in the program. Global variables are declared
outside functions and are visible from the end of the declaration to the
end of the file. A local variable is declared inside a function and is visible
from the end of the declaration to the end of the function.

Definition

A definition establishes the contents of a variable or function. A
definition also allocates the storage needed for variables and functions.

Expression

An expression is a combination of operators and operands that yields a
single value.

Statement

Statements control the flow or order of program execution in a C
program.

C Fundamentals PIC C

Function

A function 1s a collection of declarations, definitions, expressions and
statements that performs a specific task. Braces enclose the body of a
function. Functions may not be nested in C.

Main Function
All C programs must contain a function named main where program
execution begins. The braces that enclose the main function define the

begining and ending point of the program.

Example: General C program structure

#include <stdio.h> /* preprocessor directive */
/* include standard C header file
*/
#define PI 3.142 /* define symbolic constant */
float area; /* global declaration */
main()
{ /* beginning of main function */
/* and program */
int radius_squared; /* local declaration */
int radius = 3; /* declaration and initialisation */
radius_squared = square{radius); /* pass a value
to a function */
area = PI * radius_squared; /* assignment statment */
printf(“Area is %6.4f square units\n”,area) ;
¥ /* end of main function & program */
square(r) /* function head */

{
int r_ squared; /* declarations here are known */
/* only to square */

—n—

P c C Fundamentals
r_squared = r * r;
return(r_squared) ; /* return value to calling */

/* gtatement */
}

1.2 Components of a C program

All C programs contain certain essential components such as
statements and functions. Statements are the parts of the program that
actually perform operations. All C programs contain one or more
functions. Functions are subroutines, each of which contains one or
more statements and can be called by other parts of the program.
When wrting programs, indentations, blank lines and comments
improve the readability - not only for yourself at a later date, but also for
those who bravely follow on. The following example shows some of the
required parts of a C program.

#include <stdio.h>
/* My lst C program */

main()
{

printf (“Hello world!”);
}

The statement #include <stdio.hs tells the compiler to include the
source code from the file ‘stdio.h’ into the program.

The extension .h stands for header file. A header file contains
information about standard functions that are used in the program. The
header file stdio.h which Is called the STandarD Input and Output
header file, contains most of the input and output functions. It is
necessary to use only the include files that pertain to the standard
library functions in your program.

/* My first C program */ is a comment in C. All comments are
preceded by a /* and end with a */. Comments are ignored by the
compiler and therefore do not affect the speed or length of the compiled
code.

C Fundamentals PIC C

All C programs must have a main () function. This is the entry pomt into
the program. All functions have the same format which is:

FunctionName ()

{

code
}

Statements within a function are executed sequentially, beginning with
the open curly brace and ending with the closed curly brace.

The curly braces { and } show the beginning and end of blocks of code
in C.

Finally, the statement printf (#Hello world!”); represents a typical
C statement. Almost all C statements end with a semicolon (;). The
end-of-line character is not recognised by C as a line terminator.
Therefore, there are no constraints on the position of statements within
a line or the number of statements on a line.

All ines of code have a semi-colon (;) at the end to inform the compiler
it has reached the end of the statement. Failure to include this will flag
an error in the NEXT line. The exception to this is the if command
where the ; needs to be at the end of the next line e.g.

if (ThisIsTrue)
DoThisFunction ;

1.3 #pragma

The pragma command instructs the compiler to perform a particular
action at the compile time such as specifying the PIC being used

#pragma device PIC16C54

1.4 main()

Every program must have a main function which can appear only once.
No parameters can be placed in the () brackets which follow. As main

C Fundamentals

is classed as a function, all code which follows must be placed within a
pair of braces { } or curly brackets.

main ()
{
body of program

}

1.5 #include

The header file, (denoted by a .h extension) contains information about
library functions such as what argument(s) the function accepts and
what argument(s) the function returns or the location of PIC registers for
a specific PIC.

#include <16C54.h>

This information is used by the compiler to link all the hardware specifics
and source programs together. In the above include, the register for
portb would be assigned 06h and the trisb register 86h. In assembler
sysntax, this would be:-

portb equ 06h ; port register
trisb equ 86h ; port direction register

An example of including header files using an #include In @ C program
IS:

#include <stdio.h> // standard input and output routines
#include <conio.h> // console input and cutput routines
main()
{

printf (“Microchip is “);

while(!kbhit());
printf (##11”);

C Fundamentals

The function printf () is found in the header file stdio.h while the
function kbhit () is found In the header file conio.n. Both these
header files must be used in this program so the compiler has essential
information about the functions you are using.

Angled brackets
#include <thisfile.h>

tell the preprocessor to look in another directory for the file while the
quote marks

#include “thatfile.h”
tell the preprocessor to look in the current directory.
You have probably noticed that the #include directive does not have a
semicolon at the end. The reason for this is that the #include directive

is not a C keyword, but instead is an instruction to the compiler.

The whole of the include file 1S inserted into the source file at the
compile stage.

1.6 printf Function

The printf function i1s a standard library function that i1s contained in
the header file ‘stdio.h’. printf allows the programmer to print
information to the screen. The general format for a printf () statement
is:

printf (“control_string”, argument_list);

control_string is a string with double quotes at each end. Inside this
string any combination of letters, numbers and symbols can be used.
Special symbols called format specifiers are denoted with a %. The
control_string must always be present in the printf() function.
argument_1list may not be required if there are no format specifiers in
the format string. The argument_1list can be composed of constants
and variables. The following two examples show printf () statements

AN —) T ol w-T C Fundamenials

using a constant and then a variable.
printf (“Hello world!”);
printf (“Microchip is #%d:!”,1);

The format specifier (%d) is dependent on the type of data being
displayed. The table below shows all of the format specifiers in C and
the data types they affect.

Format Specifiers printf ()

%c single character

%uc unsigned character

%38 string

%d signed decimal integer

%f floating point (decimal notation - must include
decimal point)

%e floating point (exponential or scientific notation)

%g floating point (%f or %e, whichever is shorter -
general format)

%u unsigned decimal integer

%x unsigned hexadecimal integer

%p pointer

%0 unsigned octal integer

1 prefix used with %d, %u, %x, %o to specify long

integer
NOTE a 0 (zero) following a % character within a format string forces
leading zeros to be printed out. The number following specifies the
width of the printed field.

printf (#The Hex of decimal 12 is %02x\n”,12);
would print out

The Hex of decimal 12 is Oc

Escape Sequences

\n newline \a audible bell

—~

R

C Fundamentals R~ Tel =R
\t horizontal tab \b Dbackspace

\r carriage return \0 null character

\f formfeed \v vertical tab

\’ single quote \xhhh insert HEX code hhh

\” double quote

\\ backslash

%% percent gign

\? question mark

The format specification can also be shown as
%][flags][width][.precision] so in a previous example the line:-

printf(“Area is %6.4f square units\n”,area) ;

will print out the value area in a field width of 6 with a precision of 4
decimal places.

1.7 Variables

A variable is a name for a specific memory location. This memory
location can hold various values depending on how the variable was
declared. In C, all variables must be declared before they are used. A
variables declaration tells the compiler what type of variable is being
used. All variable declarations are statements in C and-therefore must
be terminated with a semicolon.

The five basic data types that C supports are char, int, float,
double, void. The general format for declaring a variable Is:

type variable name;
An example of declaring a variable is char ch;. The compiler would

Interpret this statement as the variable ch is declared as a char (8-bit
unsigned integer).

1.8 Constants

A constant is a fixed value which cannot be changed by the program.
For example, 25 is a constant. Integer constants are specified without

——

L e e R
T PIC C© C Fundamentals

any fractional components, such as -100 or 40. Floating point constants
require the decimal point followed by the number’s fractional
component. The number 456.75 is a floating point constant. Character
constants are enclosed between single quotes such as ‘A’ or ‘&’.

When the compiler encounters a constant in your program, it must
decide what type of constant it 1s. The C compiler will, by default, fit the
constant into the smallest compatible data type that will hold it. So 15
is an int, 64000 is an unsigned and 105020 is a 1ong.

A constant is declared using the #define statement.

#define <label> value

The <label> defines the name you will use throughout your program,
value 1s the value you are assigning 10 <labels.

#define TRUE 1

#define pi 3.14159265359
You can specify the type of a constant by using the foliowing suffixes:

F floating point
FL. long double

U unsigned

L long

C allows you to specify constants in hexadecimal and octal formats.
Hexadecimal constants must have the prefix ‘'0x’. For example 0xA4 is
a valid hexadecimal constant. In addition to numeric constants, C
supports string constants. String constants are a set of characters
enclosed with double quotes.

1.9 Comments

Comments are used to document the meaning and operation of the
source code. All comments are ignored by the compiler. A comment can
be placed anywhere in the program except for the middle of a C
keyword. function name or variable name. Comments can be many lines

C Fundamentals T =TT = 0 o

long and may also be used to remove temporarily a line of code. Finally,
comments cannot be nested.

Comments have two formats. The first format is used by all C compilers
and is

/* This is a comment */
The second format is supported by most compilers and is
// This is a comment

'l .. . Whichof the following comments is valid? Invalid?
EXCERCISE-

/* My comment is very short */

/* My comment is very, very, very, Very, Very very, very,
very, very, very, very, very,
very, very, very long and is valid */

/* This comment /* looks */ ok, but is invalid */

1.10 Functions

Functions are the basic building blocks of a C program. All C programs
contain at least one function, main () . Most program that you will write
will contain many functions. The format for a C program with many
functions Is:

main()

{

}
functionl ()
{
}

function2 ()
{
}

—1—

C Fundamentals

main () is the first function called when the program is executed. The
other functions, functioni() and function2 (), can be called by any
function in the program.

Traditionally main () is not called by any other function, however, there
are no restrictions in C.

The following is an example of two functions in C.
#include <stdio.h>

main()

{
printf(“I ¥);
functionl();
printf(~C.”);

}

functionl()
{

printf(#“like *);
}

One reminder when writing your own functions is that when the closed
curly brace of a function is reached, the program will start executing
code one line after the point at which the function was originally called.

1.11 C Keywords

The ANSI C standard defines 32 keywords for use in the C language. In
C, certain words are reserved for use by the compiler to define data
types or for use in loops. All C keywords must be in lowercase for the
compiler to recognise them. Typically, many C compilers will add several
additional keywords that take advantage of the processor’s architecture.

The following is a list of the keywords:

—ﬂ—

C Fundamentals

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

N

EXCERCISE->

1. Write a program that prints your name to the screen.

2. Write a program that declares one integer variable called year.

This variable should be given the value of the current year and then,
using a printf () statement, display the value of year on the screen.
The result of your program should look like this: The year is 1998

—ﬂ—

Bluebird Flecuronics

Variables

V' Variables

An important aspect of the C language is how it stores data. This
chapter will examine more closely how variables are used in C to
store data.

The topics discussed in this chapter are:
data types
declarations
assignments
data type ranges
type conversions

Vanables

2.1 Data Types

The C programming language supports five basic data types and four
type modifiers. The following table shows the meanings of the basic
data types and type modifiers.

Type Meaning Keyword
character character data char
integer signed whole numbers int

float floating point numbers float
double double precision floating point numbers double
void valueless void
signed positive or negative number signed
unsigned positive only number unsigned
long doubles the length of a number long
short halves the length of a number short

Each of the data types represent a particular range of numbers, which
can change depending on the modifier used. The next table shows the
possible range of values for all the possible combinations of the basic
data types and modifiers.

Type Bit Width Range

bit 1 0 to 1

char 8 -128 to 127

unsigned char 8 0 to 255

signed char 8 -128 to 127

int 16 ~32768 to 32767
unsigned int 16 0 to 65535

short int 16 -32768 to 32767
unsigned short int 16 0 to 65535

long int 32 -2147483648 to 2147483647
unsigned long int 32 0 to 4294967295

float 32 3.4E-38 to 3.4E+38
double 64 1.7E-308 to 1.7E+308
long double 80 3.4E-4932 to 1.1E+4932

—j—

T

variables co T mimm

See individual C compiler documentation for actual data
(types and numerical range.

C allows a shorthand notation for the data types unsigned int,
short int, and long int. Simply use the word unsigned, short, Or
long Without the int. To make arithmetic operations easier for the CPU,
C represents all negative numbers in the 2's complement format. To find
the 2’s complement of a number simply invert all the bits ahd add a 1 to
the result. For example, to convert the signed number 29 into 2's
complement:

00011101= 29

11100010 invert all bits
1 add 1
11100011= -29

Example of assigning a 1ong value of 12000 to a. 12000 in hex 1s 2EEOQ.
The following code extract assigns the lower word (EQ) to register 11h
and the upper word (2E) to 12h

long a = 12000;

main()
{
0007: MOVLW EO
0008: MOVWF 11
0009: MOVLW 2E
000A: MOVWF 12
}
RN

.
o
;

EXCERCISE=

1. Write this statement in another way:
long int i;

2. To understand the difference between a signed number and an
unsigned number, type in the following program. The unsigned integer
35000 is represented by -30536 in signed integer format.

B e ——
: ' plc o Variables

#include <stdio.h>

main()

{
int 1i; /* signed integer */
unsigned int u; /* unsigned integer */
u = 35000;
i = u;
printf (“%d %u\n”, i, u);

}

2.2 Variable Declaration

Variables can be declared in two basic places: inside a function or
outside of all functions. The variables are called local and global
respectively. Variables are declared in the following manner:

type variable_name;

where type is one of C’s valid data types and variable_name is
the name of the variable.

Local variables (declared inside a function) can only used by statements
within the function where they are declared.

The value of a local variable cannot be accessed by functions
statements outside of the function. The most important thing to
remember about local variables is that they are created upon entry into
the function and destroyed when the function is exited. Local variables
must also be declared at the start of the function before the statements.

It is acceptable for iocal variables in different functions to have the same
name. Consider the following example.

#include <stdio.h>

void £2(void)
{

}/grwable§ i) N PIC C

int count;
for (count=0 ; count<l1l0; count++)
printf (”%d \n”,count);

£1()
{
int count;
for (count=0; count<l0; count++)
£2();
}
main()
{
£1();

return 0;
}

This program will print the numbers 0 through 9 on the screen ten times.
The operation of the program is not affected by a variable named count
located in both functions.

Global variables, on the other hand, can be used by many different
functions. Global variables must be declared before any functions that
use them. Most importantly, global variables are not destroyed until the
execution of the program is complete.

The following example shows how global variables are used.

#include <stdio.h>
int max;

£1()

{
int i;
for(i=0; i<max; i++)
printf(#%d ~,i);

}

main()
{

o e e A S

LPIie ¢ Varibls

max = 10;
£1();
return 0;

In this example, both functions main () and £1 () reference the variable
max. The function main () assigns a value to max and the function £1 ()
uses the value of max to control the for loop.

I

EXCERCISE'>

1. What are the main differences between local and global
variables?
2. Both local and global variables may share the same name in C.

Type in the following program.
#include <«<stdio.h>
int count;

£1()
{
int count;
count=100;
printf(“count in £1(): %d\n”,count);

main()
{
count=10;
£1();
printf (“count in main(): %d\n”,count):;
return 0;

}

Inmain () the reference to count is the global variable. In £1 () the local
variable count overrides the usage of the global variable.

Varables

2.3 Variable Assignment

Up to now we have only discussed how to declare a variable in a
program and not really how to assign a value to it. Assignment of values
o vanables is simple:

variable name = value ;

Since a variable assignment I1s a statement, we have to include the
semicolon at the end. An example of assigning the value 100 to the
integer variable count Is:

count = 100 ;

The value 100 is called a constant. Many different types of constants
exist in C. A character constant is specified by enclosing the character
in single quotes, such as ‘M’ . Whole numbers are used when assigning
values to integers. Floating point numbers must use a value with a
decimal point. For example, to tell C that the value 100 is a floating point
value, use 100.0.

A variable can also be assigned the value of another variable. The
following program illustrates this assignment.

main()

{
int 1i;
int j;

i=0;
j=1;
}

.

;?ﬁﬁ - N

EXCERCISE=>

1. Write a program that declares one integer variable called count.
Give count a value of 100 and use a printf () statement to display the
value. The output should look like this:

Vanables

TPIc G

100 is the wvalue of count

2. Write a program that declares three variables, char, float,
and double with variable names of ch, £, and 4. Assign a ‘R’ to the
char, 50.5 to the float, and 156.007 to the double. Display the value of
these variables to the screen. The output should ook like this:

ch is R
f is 50.5
d is 156.007

2.4 Enumeration

in C, it 1s possible to create a list of named integer constants. This
declaration is called enumeration. The list of constants created with an
enumeration can be used any place an integer can be used. The
general form for creating an enumeration is:

enum name {enumeration list} wvariable(s);

The variable list is an optional item of an enumeration. Enumeration
variables may contain only the values that are defined in the
enumeration list. For example, in the statement

enum color_type {red,green,yellow} color;

the variable color can only be assigned the values red, green or
vellow.

The compiler will assign integer values to the enumeration list starting
with 0 at the first entry. Each entry is one greater than the previous one.
Therefore, in the above example red is 0, greenis 1 and yellow is 2.
This default value can be overridden by specifying a value for a
constant. This example illustrates this technique.

enum color_type {red,green=9,yellow} color;

This statement assigns 0 to red, 9 10 green and 10 to yellow.

Variables z"wﬁjffﬁbwfﬁxﬁ:“?“Nﬂf

Once an enumeration is defined, the name can be used to create
additional variables at other points in the program. For example, the
variable mycolor can be created with the colortype enumeration by:

enum color type mycolor;

Essentially, enumeration’s help to document code, instead of assigning
a value to a variable and enumeration can be used to clarify the
meaning of the value.

T

| L

EXCERCISE<

1. Create an enumeration of the PICI7CXX family line.

2. Create an enumeration of currency from the lowest to highest
denomination.

3. Is the following fragment correct? Why/Why not?

enum {PIC1l6C51,PIC1l6C52,PICl6C53} device;
device = PICl6C52;
printf (“First PIC was %s\n”,device);

2.5 typedef

The typedef statement is used to create a new name for an existing
type. The format is:

typedef o0ld_name new_name;

The new name can be used to declare variables. For instance, the
following program uses the name smallint for the type signed char.

#include <stdio.h>
typedef signed char smallint;
main()

{

smallint i;

—

Vanabies

for(i=0;i<10;i++)
printf (*%d #,1);

}

When using typedefs, you must remember two key points. Firstly, a
typedef does not deactivate the original name or type. In the previous
example, signed char is still a valid type. Secondly, several typedef
statements can be used to create many new names for the same
original type.

Typedefs are typically used for two reasons. The first is to create
portable programs. |f the program you are writing will be used on
machines with 16-bit and 32-bit integers, you might want to ensure that
only 16-bit integers are used. The program for 16-bit integers would use

typedef int myint;

to make all integers declared as myint 16-bits. Then, before compiling
the program for the 32-bit compuiter, the typedef statement should be
changed to

typedef short int myint;

so that all integers declared as myint are 16-bits.

The second reason 0 use typedef statements is to help you document
your code. If your code contains many variables used to hold a count of
some sort, you could use the following typedef statement to declare all
your counter variables

typedef int counter;

Someone reading your code would recognise that any variable declared
as counter is used as a counter in the program.
A

EXCERCISE~

1. Make a new name for unsigned 1long called UL. Use this
typedef in a short program that declares a variable using UL,
assigns a value to it and displays the value to the screen.

Vanables I = T To i & P

2. Is the following segment of code valid?

typedef int height;
typedef height length;
typedef length depth;

depth d4;

2.6 type Conversions

C allows you to mix different data types together in one expression. For
example, the following is a valid code fragment:

char ch = ‘0’;

int 1 = 15;

float £ = 25.6;

double result = ch*i/f;

The mixing of data types is governed by a strict set of conversion rules
that tell the compiler how to resolve the differences. The first part of the
rule set is a type promotion. The C compiler will automatically promote
a char Or short int in an expression to an int when the expression
is evaluated. A type promotion is only valid during the evaluation of the
expression, the variable itself does not become physically larger.

Now that the automatic type promotions have been compieted, the C
compiler will convert all variables in the expression up to the type of the
largest variable. This task is done on an operation by operation basis.
The following algorithm shows the type conversions:

IF an operand is a long double

THEN the second is converted to long double
ELSE IF an operand is a double

THEN the second is converted to double

ELSE IF an operand is a float

THEN the second is converted to float

ELSE IF an operand is an unsigned long

THEN the second is converted to unsigned iong

Varniables

ELSE IF an operand is long

THEN the second is converted to long
ELSE IF an operand 1s unsigned

THEN the second is converted to unsigned

Let's take a look at the previous example and discover what type of
promotions and conversions are taking place. First of all, ch is
promoted to an int. The first operation is the multiplication of ch with 1.
Since both of these variables are now Integers, no type conversion
takes place. The next operation is the division between ch*i and £.
The algorithm specifies that if one of the operands is a float, the other
will be converted to a float. The result of ch* i will be converted to a
floating point number then divided by £. Finally, the value of the
expression ch*i/f is a float, but will be converted to a double for
storage in the variable result.

Instead of relying on the compiler to make the type conversions, you can
specify the type conversion by using the following format:

(type) value

This is called type casting. This causes a temporary change in the
variable. type I1s a valid C data type and value Is the variable or
constant. The following code fragment shows how to print the integer
portion of a floating point number.

float f;

£f = 100.2;
printf (#%d”, (int)£f);

The number 100 will be printed to the screen after the segment of code
is executed.

2.7 variable storage class

Every variable and function in C has two attributes - type and storage
class. The type has already been discussed char, int etc. There are
four storage classes - automatic, external, static and register and have

Varables » PIC C

the following C names -

auto extern static register
Auto

Variables declared within a function are auto by default, so

{ char c¢;
int a, b, e;

is the same as

{ autocharc;
autoint a, b, e;

When a block of code is entered, the compiler assigns RAM space for
the declared variables. The RAM locations are used In that ‘local’ block
of code and can / will be used by other blocks of code.

main()
{ char ¢
int a =1, b = 3, e = 5;

n
o
e

0007: CLRF 0E - register 0OEh assigned
to C

0008: MOVLW 01 - load w with 1

0009: MOVWF OF - load register assigned
to a with w

000A: MOVLW 03 - load w with 3

000B: MOVWF 10 - load register assigned
to b with w

000C: MOVLW 05 - load w with 5

000D: MOVWF 11 - load register assigned

to e with w

——

~ PIC C Variables

Extern

All functions and variables declared outside a function body have a storage
class set as external. The RAM locations are permanently assigned to
the variable and are shared throughout the program by all functions.

#include <stdio.h>
int ¢ = 25;

main()

extern int c¢;
printf (“%d\n”,c);
return 0;

This exampie will print 25 when run.

The use of extern int c ensures that the compiler will associate the
variable ¢ used in the function with the externally declared int c.

extern int ¢ = 5;
main()
{
0007: MOVLW 05 - load w with 5
0008: MOVWF OE - load register assigned to ¢
with w
C++;
0009: INCF 0OE,F - increment c¢ and replace in ¢
}
Static

The variable class static will allow local variables to retain their
previous value on re-entry to a block of code.

void test()
{

Vanables

charx,v,z;
static int count = 0;
printf (“count = %d\n”, ++count);

The variable count is initialised once and thereafter increments every
time the function test is called.

Register

The variable class register originates from large system applications
where it would be used to reserve high speed memory for frequently
used variables. The class is used only to advise the compiler.

e
R

PR
§ e
N

Variables

NOTES

Functions

b Functions

Functions are the basic building blocks of the C language. All
statements must be within functions. In this chapter we will discuss
how to pass arguments to functions and how to receive an argument
from a function.

The topics discussed in this chapter are:
Passing Arguments to Functions
Returning Arguments from Functions
Function Prototypes
Classic and Modern Function Declarations

Functions

3.1 Functions

In previous sections, we have seen many instances of functions being
called from a main program. For instance:

main()
{

£10);
}

£1()
{
returnl;

}

In reality, this program should produce an error or, at the very least, a
warning. The reason is that the function £1() must be declared or
defined before it is used. just like vanables. If you are using a standard
C function, the header file that you included at the top of your program
has already informed the compiler about the function. If you are using
one of your functions, there are two ways to correct this error. One is to
use function prototypes which are explained in the next section. The
other is to reorganise your program like this:

£1()
{
returnl;

}

main()
{

£1();
}

An error will not be generated because the function £1() is defined
before it is called in main ().

Functions PIC C

3.2 Function Prototypes

There are two methods to inform the compiler what type of value a
function returns. The general form is:

type function_name();

For instance, the statement int sum() would tell the compiler that the
function sum() returns an integer. The second way to inform the
compiler about the return value of a function is the function prototype. A
function prototype not only gives the return value of the function, but
also declares the number and type of arguments that the function
accepts. The prototype must match the function declaration exactly.

Prototypes help the programmer to identify bugs in the program by
reporting any illegal type conversions between the arguments passed to
a function and the function declaration. It also reports if the number of
arguments sent to a function is not the same as specified in the function
declaration.

The general format for a function prototype is shown here:
type function name(type varl, type var2, type var3):;

In the above example, the type of each variable can be different. An
example of a function prototype is shown in this program. The function
calculates the volume defined by length, width and height.

#include <stdio.h>
int volume(int s1, int s2, int 83);
void main()
{
int wvol;

vol = volume(5,7,12);
printf (“volume: %d\n”,vol);

—l—

PIC C Functions

int volume(int sl1, int s2, int s83)

{
return sl*s2*s3;

}

Notice that the return uses an expression instead of a constant or
variable.

The importance of prototypes may not be apparent with the small
programs that we have been doing up to nnw. However, as the size of
programs grows from a few lines to many thousands of lines, the
importance of prototypes in debugging errors is evident.

EXCERCISE—

1. To show how errors are caught by the compiler, change the
above program to send four parameters to the function volume, 1.e. vol
= volume(5,7,12,15)

2. Is the following program correct? Why/Why not?

#include <stdio.h>
double myfunc();

void main(void)
{

printf (“%f\n”,myfunc(10.2));
}

double myfunc (double num)
{

return num/2.0;

}

3.3 Void

One exception i1s when a function does not have any parameters passed
in or out. This function would be declared as such: void nothing
(void).

Functions

An example of this could be:-

#include <stdio.h>

double pi(void) // defining the function
{ // with nothing passed in
return 3.1415926536 ;// but with pi returned

}

main()

{
double pi_val;
pi_val = pi(); // calling the value of pi
printf (“%d\n”,pi_val);

3.4 Using Function Arguments

A function argument is a value that is passed to the function when the
function is called. C allows from zero to several arguments to be passed
to functions. The number of arguments that a function can accept is
compiler dependent, but the ANSI C standard specifies that a function
must be able to accept at least 31 arguments.

When a function 1s defined, special variables must be declared to
receive parameters. These special variables are defined as formal
parameters. The parameters are declared between the parenthesis that
follow the function’s name. For example, the function below calculates
and prints the sum of two integers that are sent to the function when it
is called.

sum(int a, int b)
{
printf (#“%d\n”, a+b);
}
An example of how the function would be called in a program is:

#include <stdio.h>

—j—

Functions

void sum(int,int); // This is a function prototype

main()

{
sum(1,10);
sum(15,6);
sum (100, 25) ;

}

void sum(int a, int b)
{

printf (“%d\n”, a+b);
}

When gum() is called, the compiler will copy the value of each
argument into the variables a and b. It is important to remember that
the values passed to the function (1,10,15,6,100,25) are called
arguments and the variables a and b are the formal parameters.

Functions can pass arguments in two ways. The first way is called “call
by value”. This method copies the value of an argument into the formal
parameter of the function. Any changes made to the formal parameter
do not affect the original value of the calling routine. The second method
is called “call by reference”. In this method, the address of the argument
is copied into the formal parameter of the function. Inside this function,
the formal parameter is used to access the actual variable in the calling
routine. This means that changes can be made to the variable by using
the formal parameter. We will discuss this further in the chapter on
pointers. For now, we will only use the call by value method when we
pass arguments to a function.

You might have noticed that when the program is compiled a warning
message about a missing prototype for the function sum() appears.
Don’t worry about this message now, we will cover how to prototype a
function later in this chapter.

O ———
Functions . .o PMIc e ..

L
i

EXCERCISE-"

1. Write a function that takes an integer argument and prints the
value to the screen.
2. What is wrong with this program?

#include <stdio.h>

print_it(int num)
{

printf (“%d\n”,num) ;
}

main()

{
print_ic(156.7);
}

3.5 Using Functions to Return Values

Any function in C can return a value to the calling routine. Typically, the
function is put on the right side of an equals sign. The return value does
not necessarily need to be used in an assignment statement, but could
be used In a printf() statement. The general format for telling the
compiler that a function returns a value is:

type function_name(formal parameters)
{

<statements>

return value;

}

where type specifies the data type of the return value of the function. A
function can return any data type except an array. If no data type is
specified, then the C compiler assumes that the function i1s returning an
integer (int). If your function does not return a value, the ANSI C
standard specifies that the function should return void. This explicitly
tells the compiler that the function does not return a value.

Functions

This example shows a typical usage for a function that has a return
value.

#include <stdio.h>
#include <math.h>

main()
{
double result;
result = sqgrt(16.0);
printf (#%f\n”, result);
}

This program calls the function sart () which returns a floating point
number. This number is assigned to the variable result. Notice that
the header file math.h I1s included because it contains information
about sgrt () that is used by the compiler.

It is important that you match the data type of the return value of the
function to the data type of the variable to which it will be assigned. The
same goes for the arguments that you send to a function.

So, how do you return a value from a function? The general form is:
return variable_name;

where variable name is a constant, variable or any valid C
expression that has the same data type as the return value. The
following example shows both type of functions.

main()

int num;

num = func();

printf (“%d\n”, num);

num = sum(5,127);

printf (#%d\n”, num):
}

func()
{

—B—

Functions

return 6;

sum(int a, int b)
{
int result;

result = a + b;
return result;

}

One important thing to note is that when a return statement is
encountered, the function returns iImmediately to the calling routine. Any
statements after the return will not be executed. The return value of a
function 1s not required to be assigned to a variable or to be used in an
expression, however, if it is not then the value I1s lost.

EXCERCISE™

1. Write a function that accepts an integer number between 1 and
100 and returns the square of that number.

2. What is wrong with this function?

#include <stdio.h>

main()
{

double result;

result = £1();

printf (“%f\n”,result);
}

int £1()
{

return 60;
}

—j—

PICC. @ Functions

3.6 Classic and Modern Function
Declarations

The original version of C used a different method of formal parameter
declaration. This form, now called the classic form, is shown below:

type function name(varl,var2,..,varn)
type vari;
type var2;

type varn;
{

<statements>
}

Notice that the declaration is divided into two parts. Only the names of
parameters are Included inside the parenthesis. Outside of the
parenthesis the data types and formal parameter names are specified.

The modern form, which we have been using in previous examples, is
given by:

type function_name (type parameterl, ...,
type parametern)

In this type of function declaration, both the data types and formal
parameter names are specified between the parenthesis.

The ANSI C standard allows for both type of function declarations. The
reason is to maintain compatibility with older C programs of which there
are literally billions of lines of C code. If you see the classic form in a
piece of code, don’t worry, your C compiler should be able to handle it.
Going forward, you should use the modern form when writing code.

Functions

i

:

EXCERCISE->

1 What is a function prototype and what are the benefits of using it ?
2 Convert this program using a classical form for the function
declarations to the modern form.

#include <stdio.h>

void main(void)
{
printf(“area = %d\n”, area(l10,15));

area(l,w)
int 1,w;
{
return l*w;

—l—

f PIC C » Functions

NOTES

C Operators

& C Operators

n C, the expression plays an important role. The main reason is that

C defines more operators than most other languages. An expression
Is a combination of operators and operands. In most cases, C operators
follow the rules of algebra and should look familiar.

In this chapter we will discuss many different types of operators
including:-

Arithmetic

Relational

Logical

Bitwise

Increment and Decrement

Precedence of Operators

CPIC o 1 C Operators

4.1 Arithmetic Operators

The C language defines five arthmetic operators for addition,
subtraction, multiplication, division and modulus.

+ addition

- subtraction

* multiplication
/ division

% modulus

The +, - , *, and / operators may be used with any data type. The
modulus operator, %, can be used only with integers. The modulus
operator gives the remainder of an integer division. Therefore, this
operator has no meaning when applied to a floating point number.

The - operator can be used two ways, the first being a subtraction
operator. The second is used to reverse the sign of a number. The
following example illustrates the two uses of the - sign.

a a-b ; subtraction

a = -a ; reversing the sign of a

Arithmetic operators can be used with any combination of constants
and/or variables. For example, the following expression is a valid C
statement.

result = count - 163;

C also gives you some shortcuts when using arithmetic operators. One
of the previous examples,a = a - b;, can also be writtena -= b;.
This method can be used with the +, -, *, and / operators. The
example shows various ways of implementing this method.

Is the same as

a¥*=b a=a*b
a/=b a=a/b
a+=b a=a+b
a-= a=a-b

C Operators
a%=Db a=a%b
a<<= a=a<<b
a>>=b a=a>>b
a&=b a=a&b
al=b a=alb
ar= a=a’b

Taking the C code and comparing it to the assembled version shows
how the arithmetic function is achieved within the PIC.

int a,b,c;

a =b + ¢c;
becomes
0007: MOVF
0008: ADDWF
0009: MOVWF

a=>b - ¢;
becomes
0007: MOVF
0008: MOVWF
0009: MOVF
000A: SUBWF

The importance of understanding

OF,wW
10,w
OE

OF,w
OE

10,w
0E,F

load b

; add ¢ to b
save 1n a

~e

~

load b

save in a

; load c

; subtract from a

~o e

assembler becomes apparant when

dealing with problems - | have found at times that looking at the
assembler listing (.LST) points to the C error. One simple fault is the

use of = or ==.

a = b;
becomes
0007: MOVF
0008: MOVWF

while

a==Db;
becomes
0007: MOVF
0008: SUBWF
0009: BTFSC
000A: GOTO

OF,W
0E

OF, W
0E, W
03,2
00D

load b
save in a

~e N

load b

subtract from a
test if =zero
yes - soO bypass

N e me N

C Operators

In the first instance, a is made the same as b, in the second, a is tested
to check if it is the same as b.

i

EXCERCISE~

1. Wrnte a program that finds the remainder of 5/5, 5/4, 5/3, 5/2, and 5/1.
2. Write a program that calculates the number of seconds in a year.

4.2 Relational Operators

The relational operators in C compare two values and return a true or
false result based on the comparison. The relational operators are

greater than

>= greater than or equal to
less than

less than or equal to
equal to

not equal to

\

= I A A
wou

One thing to note about relational operators is that the result of a
comparison 1s always a 0 or 1, even though C defines true as any non-
zero value. False is always defined as zero.

The following examples show some expressions with relational
operators.

var > 15 if var is less than or equal to 15, the
result is 0 (false)

var != 15 if var is greater or less than 15, the
result is 1 (true)

EXCERCISE="

1. Rewrite the following expression using a different relational
operator.

count I= 0

C Operators O PIC C

2. When is this expression true or false? Why?

count >= 35
4.3 Logical Operators

The logical operators support the basic logical operations AND, OR, and
NOT. Again, these operators return either a 0 for false or 1 for true. The
logical operators and truth table for these operators is shown here:

AND OR NOT

p q p&&qg pllp !'p
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

The logical and relational operators are tightly coupled together when
evaluating an expression. An example of linking these operators
together is:

count>max || ! (max==57) && var>=0

Another part of C that uses the relational and logical operators is the
program control statements that we will cover In the next chapter.

o

b

EXCERCISE=

1. Rewrite the following expressions using any combination of
relational and logical operators.

result <= 5

2. Since C does not explicitly provide for an exclusive OR function,
write an XOR function based on the following truth table.

—ﬂ—

=TT -3 =- 2 C Operators

XOR

== o o
= oK o
o +H - O

4.4 Bitwise Operators

C contains six special operators which perform bit-by-bit operations on
numbers. These bitwise operators can be used only on integer and
character data types. The result of using any of these operators 1s a
bitwise operation of the operands. The bit-wise operators are:

& bitwise AND

| bitwise OR

A bitwise XOR

~ 1l’s complement
>> vright shift

<< left shift

The general format for using the shift operators is:
variable << expression

variable >> expression

The value of expression determines how many places to the left or right
the variable is shifted. Each left shift causes all bits to shift one bit
position to the left and a zero is inserted on the right side. The bit that
is shifted off the end of the variable is lost.

The unique thing to note about using left and right shifts is that a left shift
is equivalent to multiplying a number by 2 and a right shift is equivalent
to dividing a number by 2. Shift operations are almost always faster than
the equivalent arithmetic operation due to the way a CPU works.

An example of all the bitwise operators is shown.

C Operators PIC . C .

AND OR
000000101 (5) 00000101 (5)

& 000000110 (6) | 00000110 (6)
000000100 (4) 00000111 (7)
XOR NOT (ones compliment)
00000101 (5) ~ 00000101 (5)

A +0000110 (6) 11111010 (250)
00000011 (3)
LEFT SHIFT RIGHT SHIFT
00000101 (5) 00000101 (5)

<< 2 >> 2
= 00010100 (20) 00000001 (1)

(@ do not shift by more bits than the operand has - undefined result

a=>b | c;
becomes
0007: MOVF OF,W
0008: TIORWF 10,W
0009: MOVWF OE

load b
inclusive or with c
save in a

LT R

a = b & c;
becomes
0007: MOVF OF,W ; load b
0008: ANDWF 10,W ; and function with c

0009: MOVWF OE ; save 1in a
a = b>>3
becomes

0007: MOVF OF, W
0008: MOVWF OE

load b into w
save it in b

Ne e Ne e

0009: RRF 0E,F rotate contents

000A: RRF 0E,F right

000B: RRF OE,F ; three times

000C: MOVLW 1F ; apply mask to contents

000D: ANDWF OE,F ; of register for b

i = ~a;
becomes

C Operators

0009: MOVF 0F, W ; load a
000A: MOVWF OE ; save in j
000B: COMF 0E,F ; compliment Jj

Mixing it all together

Written Result
sum = a+b++ sum = a+b
b = b+l
sum = a+b— sum = a+b
b = b-1
sum = a+ ++b b = b+l

sum = a+ -b b= b-1

P e i
.

- o

EXCERCISE=>

N

1. Write a program that inverts only the MSB of a signed char.
2. Write a program that displays the binary representation of a
number with the data type of char.

4.5 Increment and Decrement Operators

How would you increment or decrement a variable by one? Probably
one of two statements pops into your mind. Maybe a = a+1; or a =
a-1;

Again, the makers of C have come up with a shorthand notation for
increment or decrement of a number. The general formats are:

a++ or ++a for increment
a— or -—-a for decrement

e R

C Operators

When the ++ or — sign precedes the variable, the variable is incremented
then that value is used in an expression. When the ++ or — follows the
variable, the value of the vanable is used in the expression then
incremented.

int j, a = 3;
0007: MOVLW 03

000B: MOVWF OE

0008: MOVWF OF ; register assigned to a
J = ++a;

0009: INCF OF,F ; a = 4

000A: MOVF OF,W ; j = 4

register assigned to j

J = a++;
000C: MOVF OF, W
000D: INCF OF,F
000E: MOVWF OE

(@ Do not use the format

a = a++;

load value of a into w
a=>5
j=4

Ne e W

as the following code will be generated

MOVF 0E, W
INCF 0E,F
MOVWF OE

value of a loaded into w

value in a incremented

previous value reloaded overwriting
incremented value

e we N

The following example illustrates the two uses.
#include <stdio.h>

void main (void)

{

int i,3;
i = 10;
J o= i++;

printf(“i = %d, j = %d\n”,i,3);

. ““"1'|:;”;(::'i»ff) B C Operators

i = 10;
j = ++1i;
printf(#i = %d, j = %d\n”,i,3);

}

The first print£ () statement will print an 11 for 1 anda 10 for j. The
second print£ () statement will print an 11 for both i and j.

il

EXCERCISE~

1. Rewrite the assignment operations in this program to increment or
decrement statements.

#include <stdio.h>
void main (void)

{
int a, b;

a = 1;
a = a+l;
b = a;
b = b-1;

printf(7a=%d, b=%d\n”, a, b):
}
2. What are the values of a and b after this segment of code finishes
executing?

a = 0;

b = 0;

a = ++a + b++;
a++;

b++;

b =-a + ++b;

4.6 Precedence of operators

Precedence refers to the order in which operators are processed by the
C compiler. For instance, if the expression a+b*c was encountered in
your program, which operation would happen first? Addition or

C Operators PIC C

multiplication? The C language maintains a precedence for all
operators. The following shows the precedence from highest to lowest.

Priority Operator Example

1) (a+b)/c parenthesis

2 I ~ 4+ — - * & a=&b plus/minus/NOT/compliment
sizeof increment /decrement/sizeof

3 * /% a%b multiply/divide/modulus

4 + - a+b add/subtract

5 < » a=b>»>c shift left or right

6 < <= > >= a>=b greater/less/equal than

7 == l= & a=b&c bitwise AND

8 | a=blc bitwise OR

9 A a=b+rc bitwise XOR

10 && a&&b logical AND

11 11 allb logical OR

12 = += -= *= /= a=zb assignment

Some of these operators we have not yet covered, but don’t worry, they
will be covered later. The second line is composed entirely of unary
operators such as increment and decrement. Parenthesis can be used
to set the specific order in which operations are performed.

A couple of examples of using parenthesis to clarify or change the
precedence of a statement are:

10-2*5 = 0

(10-2)*5 = 40
count*num+88/val-19%count
(count*num) + (88/val) -~ (1l9%count)

EXCERCISE->

1. What are the values of a and b after this segment of code finishes
executing?

int a=0,b=0;

a = 6*8+3*b++;
b += —a*24+3%4;

C Operators

C Program Control Statements

R = T e

’s C Program Control Statements

In this chapter you will learn about the statements that C uses to
control the flow of execution in your program. You will also learn how
relational and logical operators are used with these control statements.
We will also cover how to execute loops.

Topics discussed In this chapter include:
if
if-else
for
while
do-while
Nesting loops
break
continue
switch
null
return

—[—

PIcC C C Program Control Statements

5.1 if Statement

The if statement is a conditional statement. The block of code
associated with the i£ statement 1s executed based upon the outcome
of a condition. Again, any non-zero value Is true and any zero value is
false. The simplest format 1s:

if (expression) ((@ NOTE no ;)
statement;

The expression can be any valid C expression. The if statement
evaluates the expression which has a result of true or false. If the
expression is true, the statement 1s executed. If the expression is false,
the program continues without executing the statement. A simple
example of an if is:

if(num > 0)
printf (“The number is positive\n”);

This example shows how relational operators are used with program
contro! statements.

The if statement can also be used to control the execution of blocks of
code. The general format is:

if (expression)
{

statement;
}
The braces { and } are used to enclose the block of code. This tells

the compiler that if the expresston is true, execute the code between the
braces.

An example of the 1£ and a block of code is:

if (count < 0)
{

count = O;
printf (“Count down\n”);

o~

C Program Control Statements . SN = | a3 et
or
if (TestMode == 1)
{
..... print parameters to user
}

Other Operator comparisons used in the if statement are :-

equals y
is not equal to y
greater than y
less than y
y less than or equal to y
v greater than or equal to y
&& vy logical AND
v logical OR

EE - - B
LT I I

An example of one such function - converted into assembler 1s:
int j, a = 3;

0007: MOVLW 03
0008: MOVWF OF

locad a with 3

~

0009: MOVLW 02

000A: SUBWF OE,W
000B: BTFSS 03,2
000C: GOTO 00F

locad j with 2
test for match
ie zero

Ne we o

000D: MOVF OF,W ; if zero then
000E: MOVWF OE ; load a into jJ

EXCERCISE=

1. Which of these expressions results in a true value?

C Program Control Statements

c. -1
d. 5*5<25
e. 1==1

2. Write a function that tells whether a nhumber is even or odd. The
function returns 0 when the number is even and 1 when the number is
odd. Call this function with the numbers 1 and 2.

5.2 if-else Statements

What if you have two blocks of code that are executed based on the
outcome of an expression? If the expression is true, the first block of
code is executed, If the expression is false the second block of code is

executed. You would probably use the if statement combined with an
else statement. The general format for an if-else statement is:
if (expression)
statementl;

else
statement2;

The format for an if-else statement that uses blocks of code (more
than one line) is:

if (expression)
{

statement;
}
else

statement;
}
Keep in mind that an if or else statement can have as many

statements as needed. The curly braces can be thrown away when
there 1s only one statement for the if or else. An example of a single

—l—

C Program Control Statements

statement if-else is:

if (num<0)

printf (“Number is negative.\n”);
else

printf (“Number is positive.\n”);

The addition of the else statement provides a two-way decision path for
you. But what if you wanted to combine many if and else statements
together to make many decisions? What a coincidence, C provides a
method by which you can combine if’s with else’s to provide many
levels of decision. The general format is:

if (expressionl)
{
statement (8)
}

else if(expression2)
{
statement (s)
}

else
{
statement(s)
}

Here we see that many different expressions can be evaluated to pick a
block of code to execute. Rather than explain any more about this
method, here is a simple exampile.

if(num == 1)
printf (#got 1\n”):
else if(num == 2)
printf (“got 2\n”);
elge if(num == 3)
printf (#“got 3\n”);
else
printf (“got nothing\n”);

Use the single = to make one variable equal another.
(Use the == when testing for equality.

PIC C ' C Program Control Statements

EXCERCISE

1. Is this fragment of code correct?
if (count>20)

printf (“count is greater than 207);
count— ;

}

2. Write a program that prints either pence, 5 pence, 10 pence, 20
pence, 50 pence or a pound depending on the value of the variable. The
only valid values for the variable are 1, 5, 10, 25, 50 and 100

5.3 ? Operator

The 2 operator is actually a shorthand notation of the if else
statement. The format is:

(exprl) ? (expr2) : (expr3):

where each of the expr? is a valid C statement. First, expril is
evaluated. If the result 1s TRUE (remember that this is any non-zero
value), then expr2 is evaluated. If the result is

FALSE (zero), then expr3 is evaluated. The following is an example of
the 2 operator.

int i,3;
i = -1;

i ? j=0 : j=1;

Since i is -1 or non-zero, the expression j=0 will be evaluated.

5.4 for Loop

One of the three loop statements that C provides is the for loop. If you
have a statement or set of statements that needs to be repeated, a for
loop easily implements this. The basic format of a for loop is similar to

C Program Control Statements) CPIcC C :

that of other languages such as BASIC or Pascal. The most common
form of a for loop is:

for(initialization ; conditional test ; increment)

The initialization Section is used to give an initial value to the loop
counter variable. Note that this counter variable must be declared before
the for loop can use it. This section of the for loop is executed only
once. The conditional_test iS evaluated prior to each execution of
the loop. Normally this section tests the loop counter variable for a true
or false condition. If the conditional_test Is true the loop is executed.
If the conditional_test IS false the loop exits and the program
proceeds. The increment Section of the for loop normally increments
the loop counter variable.

Here is an example of a for loop:
#include <stdio.h>

void main (void)

{
int i;
for(i=0; i<10; i++)
printf(#%d ~,1i);
printf (“done”);

This program will print the numbers 0 - 9 on the screen. The program
works like this. First the loop counter variable, i, is set to zero. Next
the expression i<1o is evaluated. If this statement is true the
printf(#%d ~,i); statement is executed. Each time after the
printf(~%d ~,i); is executed, the loop counter variable is
incremented. This whole process continues until the expression i<10
becomes faise. At this point, the for loop is exited and the
printf (“done”); statement is executed.

As previously stated, the conditional test is performed at the start of
each iteration of the loop. Therefore, if the test is false to start off with,
the for loop will never be executed.

C Program Control Statements

You are not restricted just to iIncrementing the counter variable. Here are
some variations on the for loop:

for (num=100; num>0; num=num-1)

for (count=0; count<50; count+=z=5)

Converting an example in o assembler to see what happens:

int h, a;
for (h=0;h=10;h++)

0007: CLRF OE ; clear h

0008: MOVIW 0OA ; load 10

0009: SUBWF OE,W ; subtract from h

000A: BTFSS 03,2 ; and test for zero

000B: GOTO 00F ; 1f i=10, bypass increment

a++;
000D: INCF OF,F ; increment a
000E: INCF OE,F ; increment h
000F: GOTO 008 ; loop again

AN

o >

F;)('(:’ERCISEC-'>
1. What do the following for() statements do?

for(i=1; ;i++)
for(;;)

for(num=1; num; num++)
2. Write a program that displays all the factors of a number.

5.5 while Loop

Another of the loops in C is the while loop. While an expression is true,
the while loop repeats a statement or block of code. Hence the name

E—

C Program Control Statements

while. Here is the general format:

while (expression)
statement;

OR

while (expression)
{
statement;

}

The expression Is any valid C expression. The value of expression is
checked prior to each iteration of the statement or block of code. This
means that if expression is false the statement or block of code does
not get executed. Here is an example of a while loop.

#include <stdio.h>
#include <conio.h>

void main (void)

{
char ch;
printf(“Give me a g\n”);
ch=getche();
while(ch!="q’)

ch=getche();

printf(“Got a qg!\n”);

}

You will notice that the first statement gets a character from the
keyboard. Then the expression is evaluated. As long as the value of ch
is not a g, the program will continue to get another character from the
keyboard. Once a q is received, the printf() is executed and the
program ends.

P —

~

EXCERCISE~

1. What do the following while statements do?

a. while(i<10)
{

printf(“%d “,1i);

L —_————————
PGS . - C Program Control Statements

i44;

b. while(1l)
printf(“%d “,i++);

2. Write a program that gets characters from the keyboard using the
statement ch=getch () ; and prints them to the screen. When a carriage
return I1s encountered, exit the program.

5.6 do-while Loop

The final loop in C 1s the do loop. Here we combine the do and while
as such:

do
{
statements

while (expression)

In this case the statements are always executed before expression is
evaluated. The expression may be any valid C expression.

An example of a do-while loop is shown:

#include <stdio.h>
#include <conio.h>

void main(void)

{

char ch;
do
{
ch = getche();
}
while{(ch !='q’);
printf(“Got a gq!\n");

C Program Control Statements . PIC C

This program is equivalent to the example we gave in Section 5.5.

I

EX‘CEFKCISE'::>

1. Rewrite both a and b of Exercise 1 in Section 5.5 using a do-while loop.

2. Rewrite Exercise 2 in Section 5.5 using a do-while loop.

5.7 Nesting Program Control Statements

When the body of a loop contains another loop, the second loop Is said
to be nested inside the first loop. Any of C’s loops or other control
statements can be nested inside each other. The ANSI C standard
specifies that compilers must have at least 15 levels of nesting.
However, most compilers have virtually unimited levels of nesting.

An example of a nested for loop is shown here:

i=0;
while(i < 10)
{
for(j=0;3<10;j++)
printf (7”%4d #,i*10+3);
i++;

}

This routine will print the numbers 00 - 99 on the screen.

e

A

EXCERCISE=

1. Write a program that gets a character from the keyboard
(ch=getch() ;). Each time a character is read, use the ASCII value to
print an equal number of periods to the screen. For example, if the letter
‘D’ is entered (ASCII value of 68), your program would print 68 periods
to the screen. When a ‘Q’ is entered the program completes.

C Program Control Statements

5.8 break Statement

The break statement allows you to exit any loop from any point within
the body. The break statement bypasses normal termination from an
expression. When a break statement 1s encountered in a loop, the
program jumps to the next statement after the loop.

For example
#include <stdio.h>

void main(void)
{

int 1i;

for(i=0;i<50;1i++)
{
printf(“%d ~,1i):;
if (i==15)
break;

}

this program will print the numbers 0 - 15 on the screen. The break
statement works with all C loops.

T

e —

E;E’(.‘;EFICISEH’>
1. What does this loop do?
for(i=0;1;i++)
{
printf (“Microchip is great!”);

if(getch() == ‘q’)
break;

—“

C Program Control Statements N - T Y o

2. Write three programs, each using one of C’s loops, that count
forever but exit when a key is hit. You can use the function kbhit () to
detect when a key Is pressed. kbhit () returns a 1 when a key 1Is
pressed and a 0 otherwise. kbhit () requires the header file conio.h.

5.9 continue Statement

Let’'s assume that when a certain condition occurs in your loop, you
want to skip to the end of the loop without exiting the loop. C has
provided you with the continue statement. When the program
encounters this statement, it will skip all statements between the
continue and the test condition of the loop. For example,

#include <stdio.h>

void main(void)

{
int i;
for(i=0;1i<100;i++)
{
continue;
printf (“%d *,i);
}

}

This loop will never execute the printf () statement. Each time the
continue is reached, the program skips the print£ () and evaluates
the expression i<100.

A continue Will cause the program to go directly to the test condition for
while and do-while loops. In a for loop, a continue will cause the
increment part of the loop to be executed and then the conditional test
1s evaluated.

5.10 switch Statement

The if statement is good for selecting between a couple of
alternatives, but becomes very cumbersome when many alternatives
exist. Again C comes through by providing you with a switch statement.
A switch statement is equivalent to multipie i£-else statements. The

e

C Program Control Statements

general form for a switch statement is:

switch (variable)

{

case constantl:
statement(s);
break;

case constant2:
statement (s);
break:;

case constantN:
statement(s);
break;

default:
statement(s);

The vanable is successively tested against a list of integer or character
constants. When a match is found, the body of statements associated
with that constant is executed until a break is encountered. If no match
is found, the statements associated with default are executed. The
default is optional. An example of a switch is:

#include <stdio.h>
#include <conio.h>

main ()
{
char ch;
for(;;
{
ch = getch();
if(ch=="x")
return 0;
switch (ch)
{
case ‘0’:
printf (“Sunday\n”) ;
break;
case ’‘1’:
printf (“Monday\n”) ;
break;

BRI g SRR

C Program Control Statements RN = 3 [oty on-Eh

case ‘2':
printf (“Tuesday\n”);
break;

case ‘3':
printf (“Wednesday\n”) ;
break;

case ‘47:
printf (“Thursday\n”);
break;

case ‘5’':
printf (#Friday\n”);
break;

case ‘6’:
printf (#Saturday\n”) ;
break;

default:
printf (“Invalid entry\n”);

}

This example will read a number between 1 and 7. lf the number is
outside of this range, the message Invalid emtry Will be printed.
Values within the range will be converted into the day of the week.

Another example used to set the number of characters per line on a
LCD display is as follows. The DIP switch is read and the characters
per line settings read, separated from the other bits and then used to
return the appropriate value to the calling routine.

byte cpl_sw_get() // characters per line
{
byte cpl;
cpl = portd & 0b01110000;// mask unwanted bits
switch (cpl) // now act on value decoded
{
case 0x00: cpl = 8; break;
case 0x10: cpl = 16; Dbreak;
case 0x20: cpl = 20; Dbreak;
case 0x30: cpl = 28; Dbreak;
default : cpl = 40; Dbreak;

}

_ﬂ—

LPIe Co o C Program Control Statements

return (cpl); // send back value to calling routine

The ANSI standard states that a C compiler must support at least 257
case statements. No two case statements in the same switch can have
the same values. Also switch switches can be nested as long as the
inner and outer switches do not have any conflicts with values. An
ANSI compiler must provide at least 15 levels of nesting for switch
statements. Here is an example of nested switches.

switch (a)
{
case 1:
switch (b)
{
case 0:
printf(“b is false”);
break;
case 1:
printf(“b is true”);
break;
}
break;
case 2:

The break statement within the switch statement is also optional. This
means that two case statements can share the same portion of code.
An example is provided to illustrate this.

#include <stdio.h>
#include <conio.h>

void main (void)
{
int a=6,b=3;

char ch;
printf(#A = Addition\n”);
printf(#S = Subtraction\n”);

C Program Control Statements

printf(#“M = Multiplication\n”);
printf(“D = Division\n”);
printf (“Enter choice: #);
ch=getche();

switch (ch)
{
case ‘S’:
b=-b;
break;
case ‘A’:
printf (“\t\t%d”,a+b);
break;
case ‘M’:
printf (“\t\t%d”,a*b);
break;
case ‘D’:
printf (”\t\t%d”, a/b);
break;
default:
printf (“\t\tSay what?”):;

}
LIS
EXCERCISE<~
1. What is wrong with this segment of code?
float £;

switch(£f)
{
case 10.05:

2. Use a switch statement to print out the value of a coin. The value
of the coin is held in the variable coin. The phrases to describe coins
are: penny, nickel, dime, quarter, dollar.

3. What are the advantages of using a switch statement over many
if-else statements?

——

C Program Control Statements

5.11 null Statement (;)

The null statement 1s a statement containing only a semicolon; it may
appear wherever a statement is expected. Nothing happens when the
null statement is executed - unlke the NOP in assembler which
introduces a 1 cycle delay.

Statements such as do, for, if andwhile require that an executable
statement appears as the statement body. The null statement satisfies
the syntax in those cases.

for (i=0;i<10;line[++]1=0)

.
2

In this example, the loop expression of the for line[++]1=0 initalises
the first 10 elements of line to 0. The statement body 1s a null since no
additional commands are required.

5.12 return Statement

The return statement terminates the execution of a function and
returns control to the calling routine. A value can be returned to the
calling function if required but if one is omitted, the returned value is
then undefined. If no return is included in the called function, control is
still passed back to the calling function after execution of the last line of
code. If a returned value is not required, declare the function to have a
void return type.

GetvValue(c)
int c:
{
C++;
return c;
}

void GetNothing(c)
int c¢;
{

C++;

e

C Program Control Statements e plc:(:
return;
H
main()
{
int x:

X = GetValue();
GetNothing () ;

FEE plG [T C Program Control Statements

NOTES

Arrays and Strings R = [a3 «- N

’ééa Arrays and Strings

I n this chapter you will learn about arrays. An array is simply a list of
related variables of the same data type. Since strings are arrays of
characters with some special rules, we will discuss them now.

Topics that will be discussed:
Arrays
Strings
One-dimensional Arrays
Multidimensional Arrays
Initialization

R - | w-le - Arrays and Strings

6.1 One-Dimensional Arrays

An array is a list of variables that are all of the same type and can be
referenced through the same name. An individual variable in the array
is called an array element. This is a simple way to handle groups of
related data.

The general form for declaring one-dimensional arrays Is:
type var_name [size];

where type is a valid C data type, var_name is the name of the array,
and size specifies how many elements are in the array. For instance, if
we want a float array of 50 elements we would use this statement.

float height[50];

When an array is declared, C defines the first element to be at an index
of 0. If the array has 50 elements, the last element is at an index of 49.
Using the above example, say | want to index the 25th element of the
array height and assign a value of 60.5. The following exampie shows
how to do this.

height [24] = 60.5;

C stores one-dimensional arrays in contiguous memory locations. The
first element is at the lowest address. If the following segment of code
1s executed

int num[10];
int i;
for(i=0;i<10;i++)

0007: CLRF 18 ; clear i

0008: MOVIW 0Oa

0009: SUBWF 18,W ; now test if = 10

000Aa: BTFSC 03,0

000B: GOTO 013 ; if so then stop routine

—ﬂ—

Arrays and Strings

num[i] = i ;

000C: MOVLW OE ; load start of num area
000D: ADDWF 18, W

000E: MOVWF 04

000F: MOVF 18,wW

0010: MOVWF 00

0011: INCF 18,F

0012: GOTO 008

array i will look like this in memory.

element 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 5 6 7 8 9

Any array element can be used anywhere you would use a variable or
constant. Here is another example program. It simply assigns the
square of the index to the array element, then prints out all elements.

#include <stdio.h>

void main(void)
{
int num{10];
int i;

for(i=0;1i<10;i++)
num[i] = 1 * i;

for(i=0;i<10;i++)
printf (#%d “,num[i]);
}

What happens if you have an array with ten elements and you accidently
write to the eleventh element? C has no bounds checking for array
indexes. Therefore you may read or write to an element not declared in
the array, however this will generally have disastrous results. Often this
will cause the program to crash and sometimes even the computer.

C does not allow you to assign the value of one array to another simply
by using an assignment like:

—E—

Arrays and Strings

int a[10],bl[10];

a=b;

The above example is wrong. If you want to copy the contents of one
array into another, you must copy each individual element from the first
array into the second array. The following example shows how to copy
the array a[1 into b[] assuming that each array has 20 elements.

for(i=0;i<20;i++)
b[i] = alil;

EXCERCISE=

1. What is wrong with the following segment of code?
int i;
char count[10];

for(i=0;i<100;i++)
count[i] = getch();

2. Write a program that first reads 10 characters from the keyboard
using getch(). The program will report if any of these characters
match.

6.2 Strings

The most common one-dimensional array is the string. C does not have
a built in string data type. Instead, it supports strings using one-
dimensional arrays of characters. A string is defined as a null terminated
character array. A null in C is defined as a 0. If every string must be
terminated by a null, then when that string is declared you must add an
extra element. This extra element will hold the nuil. All string constants
are automatically null terminated by the C compiler.

—ﬂ—

Arrays and Strings 1 PRI .

Since we are using strings, how can you input a string into your program
using the keyboard? The function gets (str) will read characters from
the keyboard until a carriage return 1s encountered. The string of
characters that was read will be stored In the declared array str. You
must make sure that the length of str is greater than or equal to the
number of characters read from the keyboard and the null (null = \0).

Let’s illustrate how to use the function gets () with an example.

#include <stdioc.h>

void main(void)

{
char str[80];
int i;

printf (“Enter a string (<80 chars):\n”);
gets(str);
for(i=0; strli] ;i++)
printf (“%c”,strli]l);
printf (“\n%s”,str);

Here we see that the string can be printed in two ways: as an array of
characters using the %c or as a string using the %s.

EXCERCISE™~

1. What is wrong with this program? The function strcpy () copies
the second argument into the first argument.

#include <stdio.h>
#include <string.h>

void main(void)
{
char str[10];

strepy(str, “Motorola who?”);
printf (str);

A NG S Arrays and Strings

2. Write a program that reads a string of characters from the
screen and prints them in reverse order on the screen.

6.3 Multidimensional Arrays

C 18 not limited to one-dimensional arrays. You can create two or more
dimensions. For example, to create an integer array called number with
10x10 elements, you would use:

int number[10][10];

Additional dimensions can be added simply by attaching another set of
brackets.

For simplicity, we will discuss only two-dimensional arrays but
everything can be applied to multidimensional arrays. A two-
dimensional array is best represented by a row, column format.
Therefore, two-dimensional arrays are accessed a row at a time, from
left to right. The following figure shows a graphical representation of a
5x5 array.

Two-dimensional arrays are used just like one-dimensional arrays. For
example, the following program loads a 5x4 array with the product of the
indices, then displays the contents of the array in row, column format.

void main(void)

{
int array[5][4];
int i,3;

for(i=0;1i<5;1i++)
for(j=0;j<4;j++)
array[i] [3]1=i*j;
for(i=0;i<5;1i++)
{
for(j=0;j<4;j++)
printf (#%d #,array[il[j]1):
printf (~“\n”);

Arrays and Strings

The output of this program should look like this:

0 0 o0 O
0 1 2 3
0 2 4 6
0 3 6 9
0 4 8 12

As you can see, when using the multidimensional arrays the number of
variables needed to access each individual element increases.
I

i

EiCERCISELb

1. Write a program that declares a 3x3x3 array and loads it with
the numbers 1 to 27. Print the array to the screen.

2. Using the program from Exercise 1, print out the sum of each
row and column.

6.4 Initializing Arrays

So far you have seen only individual array elements having values
assigned. C provides a method in which you can assign an initial value
to an array just like you would for a variable. The general form for one-
dimensional arrays is shown here:

type array namel[size] = (value_list);

The wvalue_list is a comma separated list of constants that are
compatible with the type of the array. The first constant will be placed in
the first element, the second constant in the second element and so on.
The following example shows a 5 element integer array initialization.

int i[5] = (112131415);

The element i[0] will have a value of 1 and the element i [4] will have
a value of 5.

A string (character array) can be initialized in two ways. First you may
make a list of each individual character as such:

Arrays and Strings

char str[3] (‘a’, ‘b’, ‘c’);
The second method is to use a quoted string, as shown here
char name [5] “John”;

You may have noticed that no curly braces enclosed the string. They are
not used in this type of initialization because strings in C must end with
a null. The compiler automatically appends a null at the end of “John”.

Multidimensional arrays are initialized in the same way as one-
dimensional arrays. It is probably easier to simulate a row, column
format when using two-dimensional arrays. The following example
shows a 3x3 array Initialisation.

int num[3] [3]1=(1, 2, 3,
4, 5, 6,
7. 8, 9);
N
I
EXCERCISE=
1. Is this declaration correct?

int count[3] = 10.0, 5.6, 15.7;

2. Write a program that has a lookup table for the square and the
cube of a number. Each row should have the number, the square of the
number and the cube of the number. Create a 9x3 array to hold the
information for numbers 1-9. Ask the user for a number using the
statement scanf (“%d”, &num);. Then print out the number and its
square and cube.

6.5 Arrays of Strings

Arrays of strings are very common in C. They can be declared and
initialized like any other array. The way in which you use the array is
somewhat different from other arrays. For instance, what does the
following declaration define?

char names [10] [40];

Arrays and Strings PIC C

This statement specifies that the array name 5 contains 10 names up to
40 characters long (including the null). To access a string from this table,
specify only the first index. For example, to print the fifth name from this
array, use the following statement.

printf (“%s”,names[4]);

The same follows for arrays with greater than two dimensions. For
instance, if the array animals was declared as such:

char animals[5][41[80];

To access a specific string, you would use the first two dimensions. For
example, to access the second string in the third list, specify
animals[2]1[1].

EXCERCISE'~

1. Write a program that creates a string table containing the words
for the numbers O through 9. Allow the user to enter a single digit
number and then your program will display the respective word. To
obtain an index into the table, subtract ‘0’ from the character entered.

6.6 string functions

Strings can be manipulated in a number of ways within a program. One

example is copying from a source to a destination via the strcpy

command. This allows a constant string to be inputted into RAM.
#include <string.h> // the library for string

// functions
char string[10]; // define string array

strcpy (string, “Hi There”);// set up characters into string

Some other string functions are available such as :-

strcat
strchr
strrchr
strcmp
strncmp
stricmp
strncpy
strlen
strlwr
strpbrk
strstr

PIC C Arrays and Strings

Appends two strings

Looks for first occurance of a character

Finds last occurance of a character

Compare two strings

Compare a number of characters in two strings

Compares two strings ignoring their case (UPPER vs lower)
Copies a number of characters from one string to another
Calculates the length of a string

Replaces upper case with lower case letters

Locate the first matching character in two strings

Locate the first occurance of a character sequence in a string

Refer to the specific C compiler documentation for use and limitations.

Pointers PI1C C

Pointers

his chapter covers one of the most important and most troublesome
feature of C, the pointer. A pointer is basically the address of some
object.

Some of the topics we will cover in this chapter are:
Pointer basics
Pointers and arrays
Passing pointers to functions

e ————

B~ TN « 3 o Ponters

7.1 Introduction to Pointers

A pointer is a memory location (variable) that holds the address of
another memory location. For example, if a pointer variable called a
contains the address of a variable called b, then a points to b. lf b is a
variable at location 100 in memory, then a would contain the value 100.

The general form to declare a pointer variable is:

*
type var_name;

The type of a pointer is one of the valid C data types. It specifies the
type of variables to which var_name can point. You may have noticed
that var_name is preceded by an *. This tells the compiler that
var_name iS @ pointer variable. For example, the following statement
creates a pointer to an integer.

int *ptr;

The two special operators that are associated with pointers are the *
and the &. The address of a variable can be accessed by preceding the
variable with the & operator. The * operator returns the value stored at
the address pointed to by the vanable. For example,

#include <stdio.h>

void main(void)
{
int *a,b;
b = 6;
a = &b;
printf (“%d”, *a);
}

The first statement declares two variables: a, which is an integer pointer
and b, which is an integer. The next statement assigns the value of 6 to
b. Then the address of b (&b) is assigned to the pointer variable a.
This line can be read as assign a the address of b. Finally, the value of
b is displayed to the screen by using the * operator with the pointer

‘

Pointers F;lc:‘c:¢ ‘z11ﬁﬁ

variable a. This line can print the value at the address pointed to by a.
This process of referencing a value through a pointer is called
indirection. A graphical example is shown here.

100 [3 i
102 | 5 j
104 | -1 k
106 | 102 | ptr

int i, 3, k;
int *ptr;
Initially
iis 3
&1 is 100 // the location of i

As ptr contains 102
ptr is 102 // the value pointed to by the
// location in ptr
*ptr is 5

It is also possible to assign a value to a memory location by using a
pointer. For instance, let's restructure the previous program in the
following manner:

#include <stdio.h>

void main (void)
{
int *a,b;
a = &b;
*a=6;
printf (“%d”,b);
}

In this program, we first assign the address of variable b to a, then we
assign a value to b by using a. The line *a = 6; can be read as assign
the value 6 to the memory location pointed 1o by a. Obviously, the use
of a pointer in the previous two examples is not necessary but it
illustrates the usage of pointers.

rPIC C] /PomTers

EXCERCISE'"

1. Write a program with a for loop that counts from 0 to 9 and
displays the numbers on the screen. Print the numbers using a pointer.

7.2 Restrictions to Pointers

In general, pointers may be treated like other variables. However, there
are a few rules and exceptions that you must understand. In addition to
the * and & operators, there are only four other operators that can be
applied to pointer vanables: +, ++, -, - -. Only integer quantities
may be added or subtracted from pointer variables.

When a pointer variable is incremented, it points to the next memory
location. If we assume that the pointer variable p contains the address
100, after the statement

Pt+;

executes, p will have a value of 102 assuming that integers are two
bytes long. If p had been a £1oat pointer, p would contain the vaiue 104
after the increment assuming that floating point numbers are four bytes
long. The only pointer arithmetic that appears as expected Is for the
char type, because characters are only one byte long.

You can add or subtract any integer value you wish, to or from a pointer.
For example, the following statement

int *p;
p = p+200;

causes p to point to the, 200th memory location past the one to which p
was previously pointing.

It is possible to increment or decrement either the pointer itself or the
object to which it points. You must be careful when incrementing or
decrementing the object pointed to by a pointer. What do you think the

Pointers o PIcC

following statement will do if the value of ptr Is 1 before the statement
IS executed?

*D++;

This statement first increments p and then gets the value pointed to at
the new location. To increment the object that 1s pointed to by a pointer,
use the following statement:

(*D) ++;

The parenthesis cause the value that is pointed to by p to be
incremented. This is due to the precedence of * versus ++.

Pointers may also be used in relational operations. However, they only
make sense if the pointers relate to each other, i.e. they both point to the
same object.

i N
| X

EXCERCISE=

1. Declare the following variables and assign the address of the
variable to the pointer variable. Print the value of each pointer variable
using the %p. Then increment each pointer and print out the value of the
pointer variable again. What are the sizes of each of the data types on
your machine?

char *cp,ch;
int *ip,i;

float *fp,f;
double *dp,d;

2. What is wrong with this fragment?

R * .
int p,1i;

o
I

b
~
N

PG ©) Pointers

7.3 Pointers and Arrays

In C, pointers and arrays are closely related and are sometimes
Interchangeable. It is this relationship between the two that makes the
power of C even more apparent.

If you use an array name without an index, you are actually using a
pointer to the beginning of the array. In the last chapter, we used the
function gets (), in which we passed only the name of the string. What
is actually passed to the function is a pointer to the first element in the
string. This i1s a very important note: when an array Is passed to a
function, only a pointer to the first element is passed.

Since an array name without an index is a pointer, you can assign that
value to another pointer. This would allow you to access the array using
pointer arithmetic. For instance,

#include <stdio.hs>
int al[5]1={1,2,3,4,5};
void main(void)
{

int *p,i;

P = a;

for(i=0;i<5;i++)
printf (“%d”,*(p+i));

This is a perfectly valid C program. You will notice that in the printf ()
statement we use * (p+i), where i Is the index of the array. You may
be surprised that you can aiso index a pointer as if it were an array.
The following program is valid.

#include <stdio.h>

int a[5]={11213l415);

—j—

Pointers 1 p'c: C 1 11 g

void main (void)
{
int *p,1i;
b = a;
for(i=0;1<5;1i++)
printf (#%d”,pl[il);

One thing to remember is that a pointer should only be indexed when it
points to an array. Since pointers to arrays point only to the first element
or base of the string, it is invalid to increment the pointer. Therefore, this
statement would be invalid for the previous program.

D++;

Mixing pointers and arrays will produce unpredictable results. The
following examples show the problem - the second version does not mix
pointers and arrays:

int *p;
int arrayl[8];
p = array:;
0007: MOVLW OF load start of array
0008: MOVWF OE ; pointer
*p = 3;
0009: MOVF 0E, W
000A: MOVWF 04 point at indirect reg
000B: MOVLW 03 load 3
000C: MOVWF 00 ; and save at pointed location
array[l] = 4;
000D: MOVLW 04
000E: MOVWF 10

~

LT PR

load 4
into first location of array

LYY

int *p:;

int array[81]:;

p = array;
0007: MoOvVLw OF
0008: MOVWF OE

pll]l = 3;
0009: MOVLW 01
000A: ADDWF OE, W
000B: MOVWF 04

load array position
add to array start position
load into array pointer

Ne we e

) ‘ f‘Fﬁitzxmziﬂ)»g¥¢‘ Pointers
000Cc: MOVLW 03 ; load in 3
000D: MOVWF 00 ; save in location pointed to
* (array+1l) = 4;
000E: MOVLW 10 ; load array position
000F: MOVWF 04 ; point to it
0010: MOVLW 04 ; load 4
0011: MOVWF 00 ; save in pointed to location

~

EXCERCISE™>

1. Is this segment of code correct?

int count[10];

count = count+2;

2. What value does this segment of code display?

int valuel[51=(5,10,15,20,25);

int *p;

p = value;

printf("%d",*p+3);
7.4 Passing Pointers to Functions

In Section 3, we talked about the two ways that arguments can be
passed to functions, “call by value” and “call by reference”. The second
method passes the address to the function, or in other words a pointer
is passed to the function. At this point any changes made to the variable
using the pointer actually change the value of the variable from the
calling routine.

Pointers may be passed to functions just like any other variables. The

following example shows how to pass a string to a function using
pointers.

Pointers]) . plcm - o

#include <stdio.h>
void puts(char *p);

void main(void)
{

puts (“Microchip is great!”);
}

void puts(char *p)
{
while(*p)
{
printf (#“%c”, *p);
P++;
}
printf(“\n”):
}

In this example, the pointer p points to the first character in the string,
the “M". The statement while (*p) is checking for the null at the end of
the string. Each time through the while loop, the character that is
pointed to by p is printed. Then p is incremented to point to the next
character in the string.

Another example of passing a pointer to a function Is:

void IncBylO(int *n)
{

*n += 10;
}

void main(void)
{
int *p;
int 1i;
p = &i;
IncBylO0(p);

—[—

Pointers

=§

EXCERCISE->

1. Write a program that passes a float value to a function. Inside
the function, the value of -1 is assigned to the function parameter. After
the function returns to main, print the value of the fiocat variable.

2. Write a program that passes a float pointer to a function.
Inside the function, the value of -1 is assigned to the variable. After the
function returns to main (), print the value of the £1oat variable.

Structurers and Unions

N Structures and Unions

tructures and unions represent two of C’s most important user

defined types. Structures are a group of related variables that can
have different data types. Unions aré a group of variables that share the
same memory space.

In this chapter we will cover:
Structure basics
Pointers to Structures
Nested Structures
Union basics
Pointers to Unions

—l—

R

P C Structurers and Unions

8.1 Introduction to Structures

A structure is a group of related items that can be accessed through a
common name. Each of the items within a structure has its own data
types, which can be different from each other. C defines structures In
the following way:

struct tag-name

{
type elementl;
type element2;

type elementn;
} variable-list;

The keyword struct tells the compiler that a structure 1s about to be
defined. Within the structure each type is one of the valid data types.
These types do not need to be the same. The tag-name is the name of
the structure. The variable-1ist declares some variables that have a
data type of struct tag-name. The variable-list is optional. Each
of the items in the structure 1s commonly referred to as fields or
members. We will refer to them as members.

In general the information stored in a structure is logically related. For
example, you might use a structure to hold the name, address and
telephone number of all your customers. The following example is for a
card catalog in a library.

struct catalog

{
char author([40];
char title[40];
char pub[40];
unsigned int date;
unsigned char rev;

} card;

In this example the name of the structure is catalog. It is not the name
of a variable, only the name of this type of structure.

Structurers and Unions

The variable card Is declared as a structure of type catalog.

To access any member of a structure, you must specify both the name
of the variable and the name of the member. These names are
separated by a period. For example, to access the revision member of
the structure catalog, you would use:

card.rev='a’;

where card is the variable hame and rev is the member. The operator
is used to access members of a structure. To print the author member
of the structure catalog, you would type:

printf (“Author is %s\n”,card.author);

Now that we know how to define, declare and access a structure, what
does a structure look like in memory? The following shows what the
structure catalog looks like In memory.

author 40 bytes
title 40 bytes
pub 40 bytes
date 2 bytes
rev 1 byte

If you wanted to get the address of the date member of the card
structure you would use &card.dace. If you want to print the name of
the publisher, you would use printf (#%s”,card.pub). What if you
wanted to access a specific element in the title, like the 3rd. element in
the string?

card.title[2];
The first element of title is 0, the second is 1 and, finally, the third is 2.

Once you have defined a structure, you can create more structure
variables anywhere in the program using:

struct tag-name var-1list;

—1—

Structurers and Unions

For instance, If the structure catalog was defined earlier in the program,
you can define two more variables like this:

struct catalog book,list;

C allows you to declare arrays of structures just like any other data type.
This example declares a 50-element array of the structure catalog.

struct catalog big[50];

If you wanted to access an individual structure within the array, you
would index the structure variable, 1.e. big[10] . How would you access
the title member of the 10th element of the structure array big?

bigl9].title

Structures may also be passed to functions. A function can return a
structure just like any other data type. You can also assign the values of
one structure to another simply by using an assignment. The following
fragment is perfectly valid.

struct temp

{
int a;
float b;
char c;

} varl,varl;

vari.a = 37;
var2.b 53.65;

var2 = varl;

After this fragment of code executes the structure, variable var2 will
have the same contents as vari.

This 1s an example of initializing a structure.

struct example
{
char who[50];

Structurers and UnIons PIC C

char ch;
int i;
} varl[2]={“Rodger”,’'Y’,27,"”Jack”,'N’,30};

One important thing to note is that when you pass a structure to a
function, the entire structure 1s passed by the “call by value” method.
Therefore, any modification of the structure in the function will not affect
the value of the structure in the calling routine. The number of elements
in a structure does not affect the way it is passed to a function.

An example of using this on the PIC to set up an LCD interface would
be

struct cont_pins
{

boolean enl; // enable for all displays
boolean en2; // enable for 40x4 line displays
boolean rs; // register select

} cont;

#byte cont = 9 // Control on port e

This sets the structure for cont_pins and is then handled within the
program

void LecdSendNibble (byte n)
{

lcd_data = n; // present data
delay cycles(1l): // delay

cont.enl = ¥; // set enl® line high
delay us(2); // delay

cont.enl = 0; // set enl line low

EXCERCISE

1. Write a program that has a structure with one character and a
string of 40 characters. Read a character from the keyboard and save it
in the character using getch() . Read a string and save it in the string
using gets () . Then print the values of the members.

115 |

Structurers and Unions

2. What is wrong with this section of code?

struct type
{

int i;

long 1;

char str([50];
} s;

1=10;

8.2 Pointers to Structures

Sometimes it is very useful to access a structure through a pointer.
Pointers to structures are declared in the same way that pointers to
other data types are declared. For example, the following section of
code declares a structure variable p and a structure pointer variable q
with structure type of temp.

struct temp
{

int i;
char ch;
*

} b, oQ;

Using this definition of the temp structure, the statement g=&p is
perfectly valid. Now that q points to p, you can access p through q. If you
want to access an individual member of p, you must use the arrow
operator as shown here.

q->i=1;

This statement would assign a value of 1 to the member i of the
variable p. Notice that the arrow operator is a minus sign followed by a
greater-than sign without any spaces in between.

Since C passes the entire structure to a function, large structures can
reduce the program execution speed because of the relatively large
data transfer. For this reason, it is easier to pass a pointer to the
structure to the function.

I o ——— e)

Structurers and Unions W [=1 Te- 3 a-JEE R

One important thing to note is: When accessing a structure member using
a structure variable, use the period. When accessing a structure member
using a pointer to the structure, you must use the arrow operator.

This example shows how a pointer to a structure I1s utilized.

#include <«stdio.h>
#include <string.h>

struct s_type
{

int i;
char str[80];
} s,*p;

void main (void)
{
pP=&s;
s.1=10;
p->i=10;

strepy(p->str,”I like structures”);

princf (“%d %d %s”,s.i,p->1,p->str);

The two lines s.i=10 and p->i=10 are equivalent.

B

-
E_“)('CEFRCISEE:>
1. Is this segment of code correct?

struct S_type
{

int a;
int b;
} s,*p;
void main(void)
{
p=&s;
p.a=100;

}

—[—

Ps

Lo B 1 unrogog e

T T PIe O o Structurers and Unions

2. Write a program that creates an array of structures three long of
the type PIC. You will need to load the structures with a PICIBC5X,
PICI6CXX, and a PICI7CXX device. The user will select which structure
to print using the keyboard to input a 1, 2, or 3. The format of the
structure Is:

struct PI1C
{
char name[20];
unsigned char progmem;
unsigned char datamem;
char feature[80];

};

8.3 Nesting Structures

So far, you have only seen that members of a structure were one of the
C data types. However, the members of structures can also be other
structures. This Is called nesting structures. For example,

#define NUM_OF_ PICS 25

struct PI1C

{
char name([40];
unsigned char progmem;
unsigned char datamem;
char featurel[80];

}i

struct products

{
struct PlC devices[NUM_OF PICS];
char package_typel[40];
double cost;

} listl;

The structure products has three elements: an array of p1c structures
called devices, a string that has the package name and the cost. These
elements can be accessed using the 1ist1 variable.

Structurers and Unions L PIC C.

8.4 Introduction to Unions

A union is defined as a single memory location that is shared by two or
more variables. The variables that share the memory location may be of
different data types. However, you may only use one vanable at a time.
A union looks very much like a structure. The general format of the
union is:

union tag-name

{
type elementl:;
type element2;

type elementn;
} variable-list;

Again, the tag-name IS the name of the union and the variable-1list
are the variables that have a union type tag-name. The difference
between unions and structures is that each member of the union shares
the same data space. For example, the following union contains three
members: an integer, a character array and a double.

union u_type

{
int i;
char c[3]:
double 4;

} temp;

The way that a union appears in memory is shown below. We will use
the previous example to illustrate a union. The integer uses two bytes,
the character array uses three bytes and the double uses four bytes.

-t d »

D ———
-of2] e oft] e [0

element 0 element 1 element 2 element 3

e

Structurers and Unions

PIC

Accessing the members of the union is the same as with structures, you
use a period. The statement temp.i will access the two byte integer
member i of the union temp and temp.d will access the four byte double
4. If you are accessing the union through a pointer, you would use the
arrow operator just like structures.

It is important to note that the size of the union 1s fixed at compile time
to accommodate the largest member of the union. Assuming that
doubles are four bytes long, the union temp will have a length of four
bytes.

A good example of using a union is when an 8-bit microcontroller has
an external 12-bit A/D converter connected to a serial port. The
microcontroller reads the A/D in two bytes. So we might set up a union
that has two unsigned chars and a signed short as the members.

union sample

{
unsigned char bytes[2];
signed short word;

}

When you want to read the A/D, you would read two bytes of data from
the A/D and store them in the bytes array. Then, whenever you want to
use the 12-bit sample you would use word to access the 12-bit number.

S

e

EXCERCISE=®
1. What are the differences between a structure and an union? What
is the same?

2. Write a program that has a union with a 1ong int member and
an four byte character array. Your program should print the 1ong int to
the screen a byte at a time.

PIC Specufic C

P PIC Specific C

aving understood the basics of C, it is now time to move into the
PIC specific settings, functions and operations. Every compiler has
its own good and not so good points.

The CCS version has an extensive range of inbuilt functions to save
time and speed up the learning process for newcomers and part time C
programmers. The HI TECH Compiler I1s blased towards those
conversant with C or who are following a company policy specifying the
ANSII standard with hardware functions sometimes resembling
Assembler more than C. If not forced either way, then the decision is
yours - visit these and other sites - try the demo versions - and make
your choice.

In this chapter we will cover:
inputs and Outputs
Mixing C and Assembler
A/D Conversion
Data Communications
PWM
LCD Driving
Interrupts

oG © PIC Specufic C

9.1 Inputs and Outputs

The Input and Output ports on a PIC are made up from two registers -
PORT and PORT DIRECTION - and are designated PORTA,B,C,D,E
and TRISA,B,C,D,E. Their availability depends upon the PIC being
used in the design. An 8 pin PIC has a single GPIO register and TRIS
register - 6 1/O lines. The 16C74 has PORTS A,B,C,D and E - 33 I/O
lines. A block diagram of PORTA is shown below. Ports B,C.D and E
are similar but the data sheet needs to be consulted for PIC specifics.

4\

o5h r vo PINS
| T

K T weuts 4

- !

I— N
<M N OUTPUTS
DATABUS r—
\‘——‘J/

PORTA

16C7X ONLY

ADCON1

Port A has a 5 or 6 lines - depending on the PIC - which can be
configured as either inputs or outputs. Configuration of the port
direction is via the TRISA register. Inputs are set with a 1 and outputs
are set with a 0. The pins have both source and sink capability of
typically 25mA per pin.

The exception to the I/O lines 1s the A4 pin which has an open collector
output. As a result, the voltage levels on the pin - if tied high with a
resistor - is inverted to the bit in the PORTA register. i.e. a logic 1 in
porta,4 turns on the transistor and hence puils the pin low.

—E—

PIC Specufic C PIC C}

An example In assembler could be

clrf porta ; set outputs low

pagel ; select register page 1

movilw b’00000011’ ; AO0,1 as inputs, A2-4 as outputs
movwf porta ; send w to port control register
pagel ; change back to register page 0

Data is sent to the port via a movwf porta and bits can be individually
manipulated with either bsf or bcf. Data is read from the port with
either movEw porta oOr bit testing with btfss or btfsc.

NOTE On devices with A/D converters, ensure ADCONT1 register is also
set correctly an the 1/0 default is ANALOG.

OPTION |
‘ 88H J—?,\
S . > WEAK PULLUP

Fi\

OUTPUTS

/
< DATA BUS P%S‘IB /O PINS
\ ’

AL

.

INPUTS
INTERRUPT TRISB
MASK 86H

INTF RBIF

INTCON
0BH

Port B block diagram

Port C 1s similar but does not have the puli-up and interrupt capability of
Port B. It does have the additional PIC hardware functions as
alternatives to being used as an 8 bit port.

PIC Specufic C

Other uses for Port C I/O pins

co C1 c2 Cc3 C4 C5 Cé c7
110 o) /O 11O 110 110 i/0 I/0
T10SO|T10SI | CCP1 | SCK | SDt SDO | TX RX
T1CKI |CCP2 | PWM1|SCL | SDA CK DT
PWM2

The C compiler can interpret inputs and outputs in a number of ways -
fixed, fast or standard. In standard mode, the port direction registers
are set up prior to each I/O operation. This adds lines to a program and
hence slows down the speed, but improves the safety side of the code
by ensuring the I/O lines are always set as specified.

Fast 1/0O enables the user to set the port direction and this remains in
place until re- defined. The compiler does not add lines of code to setup
the port direction prior to each 1/0 operation.

The following example sets PORTB as inputs and then reads in the
value.

InCCS C
set_tris_b(0xff); // make inputs
b_rate = portb ; // read in port
in HITECHC
TRISB = Oxff ; // make inputs
b rate = portb ; // read in port

Bit masking is easily achieved by adding the & and the pattern to mask
after the port name

b_rate = portb & 0b00000011;// mask out unwanted bits

The value stored in b_rate can then be used to set up a value to return

PIC Specufic C : PIC

to the calling function. The following i1s the whole function used to read
some dip switches and set up a baud rate for a comms routine written
in CCS C.

byte bd_sw _get () // baud rate selection
{
byte b_rate;
b rate = portb & 0b00000011;// mask out unwanted bits
switch(b_rate)
{
case 0: set_uart_speed(1200);
break;
case 1l: set_uart_speed(2400);
break;
case 2: set_uart_speed(4800);
break;
case 3: set_uart_speed(9600);
break;

}

When setting up ports, it is advisable to set up the port conditions before
the port direction registers (TRIS). This prevents the port outputting an
unwanted condition prior to being set. When setting bit patterns in
registers or ports, work in binary as this will make it easier for you writing
and others reading the source code. It also saves converting between
number bases. In Hl TECH C -

#define IOBITS_B 10100011B// I/O bits specification
// Inputs set with 1

// Outputs set with 0

PORTA = OxFF; /7

PORTB = 0xF7; // set bits high
TRISB = IOBITS_B; // set with pattern
TRISA = 0x00; // all bits outputs

9.2 Mixing C and Assembler

There are times when inline assembler code 1s required in the middle of
a C program. The reasons could be for code compactness, timing
constraints or simply because a routine works ‘as is’. The following
example finds the parity of a value 4 passed to the routine Findrarity

ooy RR A A

=TT o PIC Specufic C

which is then equated to a when the routine is called.
In CCS C

FindParity(byte 4)
{
byte count;

#asm
movlw 8
movwiE count
clrw

loop:
xorwf d,w
rrf 4,f
decfsz count, £
goto loop
movwEf _return_

#endasm

}

main()

{
byte a, d4=7;

a = FindParity(d);

When compiled, the program looks like:-

FindParity(byte d4)
{

byte count;

#asm
0005: MOVILW 08
0006: MOVWF 28
0007: CLRW
0008: XORWF 27,W
0009: RRF 27,F
000A: DECFSZ 28,F
000B: GOTO 008

#endasm
000C: MOVWF 21
000E: GOTO 016

-~ PIC Specufic C PIC C

- }
main()
{
0011: MOVIW 07
0012: MOVWF 26
byte a, d4=7;
a = FindParity(d);
0013: MOVF 26,W
- 0014: MOVWF 27
0015: @GOTO 005
0016: MOVF 21, w
0017: MOVWF 25

Key to PIC16Cxx Family Instruction Sets

Field Description
b Bit address within an 8 bit file register (0-7)
- d Destination select; d =0 Store result n W
d =1 Store result in file register f (default)
- Assembler recognises W and f as destinations

f Register file address (0x00 to OxFF)
- k Literal field, constant data or label 25h, txdata
W Working register (accumulator)
X Don’t care location
i Table pointer control; 1=0 Do not change.
R 1=1 Increment after instruction execution.
PIC16CXX
- Literal and Control Operations
- Hex Mnemonic Description Funcuon
3Ekk ADDLW k Add teral to W k+W» W
— 39kk ANDLW k AND literal and W k .AND W » W
2kkk CALL k Call subroutine PC+1» TOS, k» PC
_ 0064 CLRWDT Clear watchdog timer 0 » WDT (and Prescaler if
assigned
2kkk GOTO [Goto address (k is nine bits) Kk » C(9)b|ts)
- 38kk IORLW k Incl. OR hteral and W k OR.W»W
30kk MOVLW Kk Move Literal to W k» W
— 0009 RETFIE Return from Interrupt TOS »PC,1 »GIE
34kk RETLW k Return with literal In W k» W, TOS P»C
. 0008 RETURN Return from subroutine TOS » PC
0063 SLEEP Go into Standby Mode 0 » WDT, stop oscillator
3Ckk SUBLW Kk Subtract W from Iiteral k-Wa»W

3Akk XORLW k Exclusive OR literal and Wk XOR W » W

PIcC C

PIC Specufic C

Byte Oriented Instructions

Hex

Mnemonic

07Ff ADDWF
05Ff ANDWF
018F CLRF
0100 CLRW
09Ff COMF
03Ff DECF
0BFf DECFSZ
OAFf INCF
OFFf INCFSZ
04Ff IORWF
08Ff MOVF
008F MOVWF
0000 NOP
ODFf RLF

Hex

Mnemonic

OCFf RRF

02Ff SUBWF
OEFf SWAPF
06Ff XORWF

f,d
f.d
f

fd
fd
fd
f,d
f,d
f,d
f,d
f

fd

fd
f,d
f,d
f,d

Description

Add W and f

AND W and f

Clear f

Clear W

Complement f
Decrement f
Decrement f, skip if zero
Increment f

Increment f, skip If zero
Inclusive OR W and f
Move f

Move W to f

No operation

Rotate left f
Description

Rotate nght f

Subtract W from f
Swap halves f
Exclusive OR W and f

Bit Oriented Operations

Hex

Mnemonic

1bFf BCF
1bFf BSF
1bFf BTFSC
1bFf BTFSS

PIC16C5X

Literal and Control Operations

Hex
Ekk
9kk
004

Akk
Dkk
Ckk
002
8kk
003
oof

Fkk

Mnemonic
ANDLW
CALL
CLRWDT

GOTO
IORLW
MOVLW
OPTION
RETLW
SLEEP
TRIS
XORLW

fb
fb
f.b
b

~ X

~ X

Description

Bit clear f

Bit set f

Bit test, skip if clear
Bit test, skip if set

Description

AND literal and W
Call subrounne

Clear watchdog timer

Goto address (k 1s nine bits)
Incl OR Iliteral and W

Move Literal to W

Load OPTION Register
Return with hiteral In W

Go into Standby Mode
Trnistate port f

Exclusive OR literal and W

Function

W+f» d

W .AND f» d
0»f

0» W

NOT.f » d
f-1»d
f-1»d, skipif0
f+1»d
f+1»d,skipifQ
W.OR. f»d
f»d

W o f

Function

f-W»d
£(0 3) « f(4:7) » d
W XOR f»d

Function

0 » f(b)

1 » f(b)

skip if f(b) = 0
skip If f(b) = 1

Function

k AND. W » W

PC + 1 » TOS, k» PC

0 » WDT (and Prescaler if

assigned)
k » PC(9 bits)

k OR.W» W

k»W

W » OPTION Register
k» W, TOS » PC

0 » WDT, stop osclillator
W » 1/O control reg f

k XOR W» W

PIC Specufic C

Byte Oriented Instructions

Hex Mnemonic Description Function

1Ct ADDWF fd AddWandf W+f» d

14f ANDWF fd ANDWandf W .AND.f» d
06f CLRF f Clear f 0»f

040 CLRW Clear W 0» W

24t COMF fd Complement f NOT.f »d

0Cf DECF fd Decrement f f-1»d

2Cf DECFSZ fd Decrement f, skip if zero f-1»d,skipif O
28f INCF f,d Incrementf f+1»d

3Cf INCFSZ f,d Incrementf, skip if zero f+1»d skipif O
10f IORWF fd Inclusive OR W and f W.OR.f»d

20f MOVF fd Movef f»d

02t MOVWF f Move W to f W f

000 NOP No operation

34f RLF f.d Roiate left

30f RRF fd Rotate nght f

08f SUBWF fd Subtract W from f f-Wsd

Hex Mnemonic Description Function

38f SWAPF fd Swap halves f f(0:3) «f(47) » d
18f XORWF {d Exclusive OR W and f W XOR.f»d

Bit Oriented Instructions

Hex Mnemonic Description Function

4bf BCF fb Bitclearf 0 » f(b)

5bf BSF fb Bitsetf 1 » f(b)

6bf BTFSC fb Bt test, skip if clear skip if f(b) = 0
7bf BTFSS f,o Bt test, skip If set skip if f(b) =1

PIC16C5X/PIC16CXX Special Instruction Mnemonics

These instructions are recognised by the Assembler and substituted In the program
hsting. They are a form of shorthand similar to Macros.

ADDCF fd Add Carry to File BTFSC Status, Carry

INCF fd z
ADDCF fd Add Digit Carry to File BTFSC Status, Digit Carry

INCF fd z
B k Branch GOTO k
BC k Branch on Carry BTFSC Status, Carry

GOTO k -
BDC k Branch on Digit Carry BTFSC Status, Digit Carry

GOTO k -
BNC k Branch on No Carry BTFSS Status, Carry

GOTO k -

PicCc C PIC Specufic C

BNDC k Branch on No Digit Carry BTFSS Status, Digit Carry

GQOTO k -
BZ k Branch on Zero BTFSC Status, Zero

GOTO k -
BNZ k Branch on No Zero BTFSS Status, Zero

GOTO k -
CLRC Clear Carry BCF Status, Carry -
CLRDC Clear Digit Carry BCF Status, Digit Carry -
CLRZ Clear Zero BCF Status, Zero -
MOVWF f Move File to W MOVF fw Z
NEGF f,d Negate File COMF f.f

INCF f,d z
SETO Set Carry BSF Status, Carry
SETDC Set Digit Carry BSF Stauwus, Digit Carry -
SETZ Set Zero BSF Status, Zero -
SKPC Skip on Carry BTFSS Status, Carry -
SKPNC Skip on No Carry BTFSC Status, Carry -
SKPDC Skip on Digit Carry BTFSS Status, Digit Carry -
SKPNDC Skip on No Digit Carry BTFSC Status, Digit Carry -
SKPZ Skip on Zero BTFSS Status, Zero -
SKPNZ Skip on Non Zero BTFSC Status, Zero -
SUBCF fd Subtract Carry from File BTFSC Status, Carry

DECF f,d VA
SUBDCF f,d Sub Digtt Carry from File BTFSC Status, Digit Carry

DECF fd z
TSTF f Test File MOVF ff z

9.3 A/D Conversion

Associated registers:-

ADCONO A/D Control register

ADCON1 Port Analog / Digital selection register
ADRES A/D result register

TRISA, TRISE Port Direction registers

PORTA, PORTE
INTCON, PIR1, PIE1

Digital Data registers
Interrupt Control registers

The A/D in the 16C7x and 12C67x devices has a resolution of 8 bits.
This means that the voltage being measured can be resolved to one of
255 values. If a 5 volt supply is used, then the measured accuracy is
5/255 = 19.6mV over a 0 to 5 volt range. However, if the reference

—ﬂ—

PIC Specufic C

ADCON1
ANALOG / DIGITAL
CONTROL

PORTA MU AD ADRES
(PORTE) CONVERTOR A/D RESULT

ADCONO
CONTROL AND
STATUS REGISTER

TRISA
{TRISE)

voltage is reduced to 2.55 volts, the resolution becomes 10mV but the
working range falls to 0 to 2.55 volts.

The A/D principle is simple enough. The A/D is turned on and a
conversion clock rate 1s chosen - if In doubt select the A/D's own RC
oscillator. The channel for conversion is selected (ADCONQO) along with
any setting of ports, direction registers (TRISA, TRISE) and mixed
analog and digital (ADCON1). The last stage is to initiate conversion.
This is by means of the GO/DONE bit in ADCONO - 1 = start conversion,
0 = end of conversion. At that point, the value obtained from the
process is waiting in the ADRES register.

(@ The default for ports having both analog and digital
capability 1s ANALOG.

If interrupt control is used to signal the end of conversion, the ADIF flag
is located in either the ADCONO or PIR1 registers.

It is iImportant to note which combination of 1/O lines can be used for
analog and digital. The following tables are exiracted from the data
sheets.

PIC Specufic C

[16C72/3 | (16C74 ONLY)
A0,1A2 A3 A5 E0O E1 E2 Vref

A A A A A A A Vd

A A VrefA A A A A3

A D A A D D D Vref

D D VviefA D D D A3

A A A D D D D Vvdd

A A VretD D D D A3

D b DD D D D —-

[16C71,710,711]
A0,1A2 A3 Vref
A A A Vdd
A A Vref A3

A D D Vvdd
D D D —

In C, the setup and operation of the A/D is simplified by ready made
library routines such as set_adc_channel, adc_read and setup_adc.
Each of these routines accesses the A/D specific registers and places
them in known conditions.

The following example function reads and returns the value of an analog
channel written in HI TECH C.

adc_read(unsigned char channel) // Read the ADC on a 16C71
{

unsigned char advalue;

ADCONO = (channel << 3) + 0xCl; // enable ADC, RC osc.

ADGO = 1;
while (ADGO)
continue; // wait for conversion
complete
advalue = ADRES; // load a/d result

return (advalue);

PIC Specufic C PIG C e

On CCS C

setup adc(adc_clock _internal);
set_adc _channel(1);
value=read_adc();

9.4 Data Comms / RS232

RS232 communications between PCs, modems etc. form part of an
Engineer’s life. The problem seems to arise when self built products
need to be interfaced to the outside world. The permutations of 9 or 25
pins on a D connector and the software controlling communications are
endless. A minimum interface can be 3 wires - Ground, Transmit and
Receive - but what to do with the remaining pins? The voltage levels
are between £3 and +15 volts allowing plenty of leeway for both drivers
and receivers. When connecting equipment with RS232 interfaces, it is
important to know which 1s classed as the Data Controlling Equipment
(DCE) and which is the Data Terminal Equipment (DTE).

Cables / Connectors.

9 way D

Pin Function

1 Carrier Detect in
2 Receive Data in
3 Transmit Daia out
4 Data Terminal Ready out
5 Ground <
6 Data Set Ready in
7 Request To Send out
8 Clear To Send in
9 Ring Indicator in
25 way D

Pin Function

1 Protective Ground <>
2 Transmit Data out
3 Receive Data in

—1—

PIC Specufic C

4 Request To Send out
5 Clear To Send in
6 Data Set Ready in
7 Signal Ground <
20 Data Terminal Ready out
22 Ring Indicator in

The remaining pins have other functions not normally used for basic
interconnection and are documented in the EIA-232-D or CCITT V24/28
specification.

Common Problems

Garbled characters parity, speed, character length, stop bits
Lost data flow control

Double spacing translation of carriage returns or line feeds
Overwriting translation of carriage returns or line feeds
No display of characters duplex operation

Double characters duplex operation

Data Format

Data sent via an RS232 interface follows a standard format.

Start bits always 1 bit

Stop bits 1 or 2 bits

Data bits 7,8 bits

Parity bits none if no error detection is required
odd or even if error detection is required

12y] |]

8IT1 BIT2 BIT3 BIT4 BITS BIT8 BIT? BIT8
IDLE START STOR IDLE
aT BT

SECEVER SamPLES DATA FORMAT 8 DATA BITS 1 STOP BIT
IN MIDDLE OF EACH
DATA ELEMENT

Asynchronous data transmission

PIC Specufic C PE TRIC G

Parity

Parity checking requires the addition of an extra bit to the data byte. The
parity system may be either ‘odd’ or ‘even’ and both systems give the
same level of error detection.

In an odd parity system the overall count of ‘1’s in the combined data
byte plus parity bit is odd and thus with an 8 bit data byte of ‘10101100’
the parity bit would be set to a ‘1’.

In an even parity system the overall count of ‘1’s in the combined data
byte plus parity bit is even and thus with an 8 bit data byte of ‘10101100’
the parity bit would be setto a ‘0’. .

If corruption of either data bits or of the parity bit itself takes place, when
the receiver carries out the parity check the corruption will be
recognised. In the event of more than one bit being corrupted 1t is
possible that the receiver will not recognise the problem provided that
the parity appears correct. So parity checking is not a cast iron method
of checking for transmission errors but, in practice, in most systems it
provides a reasonable level of security. The party system does not
correct errors in itself but only indicates that an error has occurred and
it is up to the system software to react to the error state; in most systems
this would result in a request for re transmission of the data.

Bit Rate Time Calculation

N B
As BAUD is bits per second, each data bit has a time of BAUD Rate

This works out as 1200 Baud = 833uS, 2400 Baud = 416puS, 9600 Baud
= 104uS

—

T PIC C

PIC Specufic €

ASCII Conversion Table

Control HEX msb 0 1 2
Isb bits 000 001 010
0 0000 NUL DLE SP
AA 1 0001 SOH DC1 !
B 2 0010 STX DC2 *
AC 3 0011 ETX DC3 #
AD 4 0100 EOT DC4 §
AE 5 0101 ENQ NAK %
AR 6 0110 ACK SYN &
AG 7 0111 BEL ETB
AH 8 1000 BS CAN (
Al 9 1001 HT EM)
A A 1010 LF suB
K B 1011 VT ESC +
AL C 1100 FF FS ,
M D 1101 CR GS -
AN E 1110 SO RS .
AO F 1111 Sl us I

The ASCIi symbols in the above table are:

NUL - Null

SOH - Start Of Heading

STX - Start Of Text

EOT - End Of Transmission
NAK - Negative Acknowledge
SYN - Synchronous Idle

ETB - End Transmission Block
CAN - Cancel

EM - End of Medium

SUB - Substitute

ESC - Escape

FS - File Separator

GS - Group Separator

RS - Record Separator

Us - Unit Separator

SP - Space (blank)

DC1 - Xon

11

OCONOOOUOhWN—-OO

oV YA

DLE
DC
EXT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DEL

DC3

4 5 6 7
100 101 110 111
@ P - p
A Q a q
B R b r
C S ¢ s
D T d t
E U e u
F v f v
G W ¢ w
H X h X
I Y i y
J Z z
K [k {
L I

M] m }
N A n ~
0O o DEL

- Data Link Escape
- Device Controi
- End Of Text

- Enquiry

- Acknowledge

- Bell

- Backspace

- Horizontal Tab

- Line Feed

- Vertical Tab

- Form Feed

- Carnage Return
- Shift Out

- Shift In

- Delete

- Xoff

PIC Specufic C

RS232 Handshaking

COMPUTER
POWERED UP AND

DTR=1 MODEM
POWERED UP AND
DSR 1

/(MODEM >
OK TO SEND
CTS=1
C COMPUTER f
TX DATA
H MODEM)

Typical Null Modem Connections

(COMPUTEH

PG MODEM
ot —<— —Z-—OO
o X 12
o — 10
> O
CONN Dg CONN D9
Simple RS232 Tester
ooF 150
O—= =0
O 7 7
O—= 10
CO ; 2 OO
O 10
MALE 3K FEMALE
2 2 B1 Colour Leds

CD TX RX RTS CTS DSR DSR

—l—

USART

PIC Specufic C

BAUD RATE

GENERATOR
SPBRG

TRANSMIT STATUS
TXSTA

v

TRANSMIT REGISTER
TXREG

TXIF lRCIF

RECE!IVE REGISTER
RCREG

C7 RX

[ow]

f

INTERRUPT STATUS
PIR1

RECEIVE STATUS
RCSTA

'TRISC

The USART operates in one of three modes - Synchronous Master,
Synchronous Slave and Asynchronous, the latter being the most
common for interfacing peripherals. Besides the obvious interface to
PC’s and Modems, the USART can interface to A/D, D/A and EEPROM
devices.

Associated registers

SRBGH Baud Rate register
TXSTA Transmit Status register
RCSTA Receive Status register
TRISC Port Direction register

INTCON, PIE1, PIR1 Interrupt Control registers

Data formats acceptable to the USART are 8 or 9 data bits, none, odd
or even parity - created and tested in user software - not a hardware
function and indication of over run or framing errors on the received
data. In Asynchronous mode, the USART can handle full duplex
communications, but only half duplex in synchronous mode.

Example - Initialisation function to set any baud rate and check that the
chosen value is within specification. Written in HI TECH C
#define FOSC (4000000L)

CommgInit (unsigned long int baud)
{

R gsEs R

PIC Specufic C

int X;
unsigned long tmp:;
/* calculate and set baud rate register */
/* for asynchronous mode */
tmp = 16UL * baud;
X = (int) (FOSC/tmp) - 1;
if((X>255) || (X<0))
{
tmp = 64UL * baud;

X = (int) (FOoSC/tmp) - 1;

if ((X>255) || (X<0))

{

return 1; /* panic - baud rate unobtainable */

}

else

BRGH = 0; /* low baud rate */

}
else
BRGH = 1; /* high baud rate */
SPBRG = X; /* set the baud rate */
SYNC = 0; /* asynchronous */
SPEN = 1; /* enable gerial port pins */
CREN = 1; /* enable reception */
SREN = 0; /* no effect */
TXIE = 0; /* disable tx interrupts */
RCIE = 0; /* disable rx interrupts */
T™X9 = 0; /* 8 bit transmission */
RX9 = 0; /* 8 bit reception */
TXEN = 1; /* enable the transmitter */
return 0;

}

This method of setting up the USART enables maximum flexibility for
user. A set of functions can be set up in a header file to reduce setup
time when writing code.

In CCS C, there are pre-set functions which speed up application
writing.

#use fixed_io(c_outputs=pin C6) // speeds up port use
#use Delay(Clock=4000000) // clock frequency
#use rs232(baud=4800, xmit=PIN_C6, rcv=PIN_C7)

PIC Specufic C

9.5 PWM Generation

T™R2 PR2) PERIOD ,
(PERIOD COURSE) (PERIOD FINE) DUTY CYCLE
k < »
\ | L i |
PWM1 C2
COMPARATOR »
PWM2 C1
27‘\7
\
CCPR1L CCPRZL
PWM1 PWM2
(DUTY CYCLE) (DUTY CYCLE)

Associated Registers :-

PR2 Timer 2 Period register - fine PWM frequency
T2CON Timer 2 Control register - course PWM frequency
CCPR1L Timer 2 Duty Cycle register - PWMH1

CCPR1H Timer 2 Duty Cycle register (slave)
CCP1CON Capture Compare 1 Control register

CCPR2L Timer 2 Duty Cycle register - PWM2

CCPR2H Timer 2 Duty Cycle register (slave)
CCP2CON Capture Compare 2 Control register

INTCON, PIR1, PIE1 Interrupt Control registers

For PICs with PWM generation hardware, once the registers are set up,
the PWM runs on its own without constant software involvement.
Calculation of the PWM values is best achieved with a simple
spreadsheet - see PWM.XLS on accompanying disk or by setting up the
calculation using C functions.

NOTE The value in the CCPRIL register must be in the range of 00h
to the value in PR2. Once this value is reached, the M/S ratio reaches
100% and cannot be exceeded.

Example - PWM setup - frequency = 600Hz M/S ratio = 1:1

PIC Specufic C

S R

Prescale value = ({(1/PWM Frequency) / Prescale value * (4/0OSC frequency)) -1
PWM Resolution = (log(OSC freq / PWM freq)) / log 2

So for the above example, a 600Hz PWM with a 4MHz oscillator and /16
prescaller will give 103.2 to load into the PR2 register and a resolution
of 12.7 bits

The following example in CCS C will generate one of two tones -
determined by the value passed to the routine - for a set duration. The
frequency is set with the

setup_timer_2(T2_DIV BY 4, 100, 0);
and the duty ratio is set with
set_pwml_duty(50);

The frequencies for the two tones are 2.475 kHz and 996 Hz. The on
duration is set with a simple delay followed by setting the duty cycle to
0 - silence the output even though the PWM is still running.

void sound_bell (byte y)
{
setup_ccpl (CCP_PWM) ; // Configure CCPl as a PWM
if (y==2)
{
setup_timer_2(T2 DIV _BY 4, 100, 0):;
set_pwml_duty(50); // make this value half
// of tone value (100/2)
delay_ms (200); // 0.2 second bell from
// terminal
}
else
{
setup_timer 2(T2_DIV_BY 4, 250, 0);
set_pwml_duty(125); // make this value half
// of tomne value (250/2)
delay ms(300); // 0.3 second bell from
// keypad
}

set_pwml_duty(0);
}

e — e

- lPe o PIC Specufic C

Setting up the PWM in Hi TECH C involves setting up the individual
registers

#define CLOCK 4000000
unsigned int CurrentPeriod;
void ResetPWM()

{

TMR2 = 0; // Reset the timer for the PWM.
PR2 = CurrentPeriod; // Set the timer period.
CCPR1L, = CurrentPeriod >> 1; // Set the duty
// cycle to 50%.
CCP1CON = 0x0C; // Set mode to PWM.
T2CON = 0x6; // Set PWM prescaler /16

// turn on.
}

The above code example will generate frequencies from 244 Hz to
20.883 kHz but resolution is greatly limited at the highest frequencies
where the number in the Period (PR2) register is low.

9.6 LCD Display driving

One of the most common display interfaces to PIC based designs is an
LCD display based on the Hitachi controller. There are two modes of
operation, 4 and 8 wire, with the option of write/delay or write/check
busy when sending data to the display. It is an advantage to have a
copy of the current display data sheet when writing software showing
correct timing and setup codes.

A typical interface circuit is shown below. The PIC interfaces to the
display in a 4 bit mode. Register Select (RS) changes between control
and data register banks within the display and the Enable (E) is used to
strobe data into the display. In the 4 bit mode, the most significant
nibble Is sent first.

The Initalisation code in CCS C looks like:

byte CONST LCD_INIT STRING[5] = {0x28, 0x06, O0x0c,
0x01, 0x80};

PIC Specufic C RN~ T T J oS

// Send to the LCD

// to start it up - see data sheet
void led_init(byte x)
{

byte i;

set_tris_b(0); // make port all output
cont.rs = 0;

cont.en = 0;

delay ms(15); // delay

for(i=1;i<=3;++1i)

lcd_send _nibble(3);
delay ms(5);
}
lcd_send_nibble(2);
for(i=0;i<=4;i+4+)
lcd _send byte(0,LCD INIT STRING[i]);

Sending a byte of information to the display on nibble at a time looks
like:

void lcd_send byte(byte address, byte n)

{
cont.rs = address:;
delay_cycles(1l):
delay cycles(l):
cont.en = 0;
lcd send nibble(n >> 4); // shift upper nibble
// 4 places
lcd_send nibble(n & 0xf); // mask off upper
// nibble
delay ms(10);
}

The function 1c¢d_send_nibble does the strobe function:

void lcd_send nibble(byte n)

{
lcd_data = nj; // place data on port
delay cycles(l); // delay 1 cycle
cont.en = 1; // set enable high

PIC Specufic C

delay us(2):; // delay 2uS
cont.en = 0; // set enable low

Lcot
LCD

10K
Contrast

. _ R1
. (]

a AC —

4MHz 08¢t A3

1 3 15
osc2 BOANT
| B1

——1 A4/RTCC B2

a
MCLR > Al —‘——
x1 1 AZ f—
2
6
7
]

B3
PIC16Ca4 B4
BS
B8
B7 f—

c1
100nF

It

vss
o

s
—

In HI TECH C a similar function could be:
static bit LCD_RS @ ((unsigned)&PORTB*8+6); // Register
// select
static bit LCD_EN @ ((unsigned)&PORTB*8+5); // Enable

#define LCD_STROBE ((LCD_EN = 1), (LCD_EN=0))

Initialise the LCD and put into 4 bit mode:

led _init(void)

{
LCD_RS = 0: // write control bytes
DelayMs(15); // power on delay
PORTB = 0x3; // attention!

LCD_STROBE;

DelayMs(5);

LCD_STROBE;

DelayUs (100);

LCD_STROBE;

DelayMs (5);

PORTB = 0x2; // set 4 bit mode
LCD_STROBE;

DelayUs(40);

—ﬂ—

PIC Specufic C

led_write(0x28);// 4 bit mode, 1/16 duty, 5x8 font
lcd_write(0x08);// display off
lcd_write(0x0F);// display on, blink cursor on
led_write(0x06);// entry mode

}

To write a byte of control data to the LCD in 4 bit mode:

lcd_write (unsigned char c¢)
{

PORTB = (PORTB & O0xFO0) | (c >> 4);
LCD_STROBE;
PORTB = (PORTB & O0xF0) | (c & 0xOF);

LCD_STROBE;
DelayUs (40) ;
}

To write one character to the LCD in 4 bit mode:

lcd_putch(char c)
{

LCD_RS = 1; // write characters
PORTB = (PORTB & O0xFO0) | (c >> 4);
LCD_STROBE;

PORTB = (PORTB & OxFO0) | (c & 0xOF);

L.CD_STROBE;
DelayUs(40);
}

Another function which is useful when dealing with LCD displays is the
scroll. This is not the inbuilt left/right scroll, but a software scroll up
function. The following example is used to place the latest text on the
bottom line of a 4 line display and scroll the previous line and the other
3 up one. The top line then scrolls off the display and is lost.

byte Linel[0x10]; // setup arrays to hold data

byte Line2[0x10];

byte Line3[0x10];

byte Line4[0x10];

memcpy (Linel, Line2, 0x10); // transfer data from one array

memcpy(Line2, Line3, 0x10); // to the next

memcpy (Line3, Lined, 0x10); // and again

memset (Line4, 0x20, 0x10); // and clear bottom line

lcd_same_line(0); // go to start of display

~

—E—

PIC Specufic C

for (i=0;i<=0x0f;++1)

{

k= Linel[i]; // send data from linel
lcd send_byte(l,k); // memory array to display
}

// repeat for other 3 lines

9.7 Interrupts

Interrupts can come from a wide range of sources within the PIC and
also from external events. When an interrupt occurs, the PIC hardware
follows a fixed pattern as shown below.

HARDWARE SOFTWARE

INTERRUPT

GIE=0

Y
RETURN
ADDRESS
TO STACK

v

PC LOADED
WITH 04H

TEST
INTERRUPT
FLAGS

ALL FLAGS
DO ROUTINES CLEARED
IN INTERRUPT
& CLEAR FLAGS

L |

PC LOADED
WITH STACK

2

GIE =1

CONTINUES
The hardware side is completely under PIC control, the software is all
your responsibility. When an interrupt occurs, the first step is to test to

determine if the source is the desired one or, in the case of multiple
interrupts, which one to handle first etc.

RETFIE

PIC Specufic C = Tl o

Depending on which PIC is used in a design, the type and number of
interrupts will vary. The PIC16C5x series have no nterrupts and
software written for these products will have to perform a software poll.
Some of the Interrupt sources are shown below, but refer to the data
sheet for the latest information.

The following examples illustrate how to test for an interrupt.

The first example in HI TECH C waits for a timer overflow to toggle an
output pin on the PIC.

main(void)
{
//Setup the interrupt source and Global interrupt

TOIE = 1; // Enable interrupt on TMRO
// overflow
GIE = 1; // Global interrupt enable
for(;;)
}
isr(void) // Interrupt function
{
if (! TOIF) // Was this a timer overflow?
bad_intr = 1; // NO! Shock horror!
count++; // Add 1 to count - ingert idle
// comment
TOIF = 0; // Clear interrupt flag, ready for
// next
PORTA *= 1; // toggle bit 0 of Port A, to show

// we're alive

}

The next example in CCS C forces an interrupt on receipt of a character
received via the USART. The character is placed in a buffer and the
buffer incremented ready for the next character. This function is
extracted from an LCD display program as the characters are received
faster than the display can handle them.

#int_rda
rs232 handler() // interrupt driven data

e e T

PIC C 1 PIC Specufic C

// read and store

{

b=getch(); // load character
Buffer[Buff+l] = b; // store character in memory
Buff++; // increment pointer
} .
main()

{
: enable_interrupts (INT_RDA);
enable interrupts (GLOBAL) ;
do {
while (True);
}

Where Next

What do | need to start development ?

The minimum items required to start PIC development work are :-
An IBM compatible PC - running Windows 3.1 or 95
C Compiler

If you then wish to take the development from paper to a hardware
design, you will need :-

A programmer - for reliability and support get the PICSTART Plus which
covers all the Microchip devices and is upgradable.

A dgvelopment board or hardware starter kit - to save time trying to
debug software and hardware.

Some EPROM (windowed) versions of the PIC to be used - say 3/5 to
save time when they are being erased.

An EPROM eraser - build or buy.

If developing with the 16C84 (EEPROM), you don’t need an eraser as
the device is electrically erasable - i.e. no window.

Development Path

Zero Cost Demo versions of the C compiler

Starter PICSTART Plus Programmer + C Compiler + PIC sample.
Serious In Circuit Emulator (ICE) - ICE PIC or PIC MASTER - allows
debugging of hardware and software at same time. You need a
programmer to go with the ICE - see catalogue for part numbers.

PIC Specufic C

Support Products from Bluebird Electronics

PIC in a Box - A complete starter kit for those intending to work with the
PIC. PIC in a Box comprises PICSTART Plus, Beginners Guide to the
PIC, PIC Cookbook Vol 1, Project Board, PIC Soft with additional
projects aimed at the absolute beginner, starter guidance notes and a
20% discount voucher for those wanting to attend a Microchip Approved
training workshop run by Bluebird Electronics.

16Cxx (18 pin) Hardware Starter Kit - PCB, 8 leds, regulator, 4MHz
crystal, reset components.

16C55/57 Hardware Starter Kit - PCB, 8 leds, regulator, 4MHz crystal,
reset components.

Project Board (18 pin PIC’s) - PCB, leds, regulator, push buttons,
speaker, thermistor, dip switch, PP3 battery holder, 4MHz crystal, reset
switch - 1deal starter kit for students or engineers.

16C64/74 Hardware Starter Kit - PCB, leds, regulator, push buttons,
RS232 interface, EEPROM socket, 200 hole patch area, PIC Soft disk.
PIC Converter - A pin conversion adapter to allow 16C63/73 devices (28
pin) to be used with the above 16C64/74 Hardware Starter Kit.

PIC Soft - Project board software source code, application source code
from Microchip Embedded Control Handbook plus MPLAB.

PLCC Programmer Adapter - Enables 44 pin PIC’s (not 17Cxx) to be
programmed on the PIC START Plus .

PLCC Interface Cable - Enables either the ICE PIC or PIC MASTER to
interface with 44 pin PLCC sockets on target board.

Pointers to get started

Start off with a simple program - don't try to debug 2000 lines of code in
one go.

Use known working hardware - Bluebird starter kits for example - for the
initial design phase to save debug time.

Have a few windowed PICs to hand when developing to save time
waiting for erasure

If using the PIC Start Plus (programmer only) you will need to use the
program - test - modify process - so allow extra development time.

An ICE will speed up development and save the company money - if an
engineer costs his company £200 per day, three days wasted trying to
sort out a bug without an ICE and the ICE would have paid for itself, and

PIC Specufic C

met a deadline!

Use some form of I/O map when starting your design to speed up port
identification and function

Draw a software functional block diagram to enable modular code
writing

Comment the software as it’s written. It is meaningless the following day
or if read by another

Write, test and debug each module stage by stage

Update documentation at the end of the process

Go on a Training Workshop

What happens when my program won’t run ?

Check the following:-

Has the oscillator configuration been set correctly when you
programmed the PIC?

Was the watchdog enabled when not catered for in the software?

Have all the ports been initialised correctly?

On 16C7x devices, check if the ADCON1 register is configured as
analog or digital.

Ensure the data registers are set to a known condition.

Make sure no duplication of names given to variables, registers and
labels.

Is the reset vector correct, especially if code has been moved from one
PIC family to another?

Reference Literature

Microchip Data sheets and CD ROM for latest product information.
CCS Reference Manual or HI-TECH User Guide.

Microchip MPLAB Documentation and Tutorial

Some good reference books on C

Turbo C - Kelly & Pohl 0-8053-7880-4
An Introduction to Programming in C - Kelly & Pohl 0-8053-6860-4
C Programming Guide - Purdum 0-88022-157-7

The C Programming Language - Kernighan & Ritchie 0-13-110163-3

PIC Specufic C

Hex Conversion Table

0 1 2 3 4 5 6 7 8 9 A B C D E F

6 o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 8 83 84 8 8 87 88 8 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 17S 179 180 181 182 183 184 185 186 187 188 189 190 191
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
HEX Binary Decimal

8 4 2 1

0 0 0 o0 O 0

1 0 0o o0 1 1

2 0 0 1 O 2

3 o o 1t 1 3

4 0 1 0 O 4

5 0 1 0 1 5

6 o 1 1 O 6

7 o 1 1 1 7

8 1t 0 0 O 8

9 1 0 0 A1 9

A 1 0 1 O 10

B 1 0 1 1 11

C i 1 0 O 12

D 1 1 0 1 13

E 1 1 1 0 14

F 1 1 1 1 15

P O 1 PIC Specufic C

ﬁ Software Sources

CCS Web: www.ccsinfo.com
Email: ccs@ccsinfo.com
Hitech Web: www.htsoft.com

Email: hitech@htsoft.com
Microchip Web: www.microchip.com

RF Solutions Web: www.rfsolutions.co.uk

Authors Information : PIC C

} Authors Information

experience in various fields. He owns Bluebird Electronics specialising -
in PIC Support Products and Microchip Training Workshops. This is his
sixth book, the fifth on the PIC Microcontroller, his other book is A Practical
Introduction to Electronics (from bits to chips) co written with Max Horsey.

N igel Gardner is an Electronic Engineer of some 20 years industrial

Nigel is a member of the Microchip Consultants Group.

Tel: 01380 827080
Fax: 01380 827082
Email: info@bluebird-electronics.co.uk
WEB: www.bluebird-electronics.co.uk

ﬁ't: C o Bluebird Electronics

NOTES

ISBN 1-899013-04-0

97781899"013043

	Front Cover
	Preface
	Contents
	Introduction
	1 - C Fundamentals
	2 - Variables
	3 - Functions
	4 - C Operators
	5 - C Program Control Statements
	6 - Arrays and Strings
	7 - Pointers
	8 - Structures and Unions
	9 - PIC Specific C

